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ABSTRACT 
The non-homogeneous octic equation with five unknowns represented by the Diophantine 

equation (ݔ − ଷݔ)(ݕ + (ଷݕ = ଶݓ)12 −  ଶ)ܶ଺is analyzed for its patterns of non-zero distinct݌
integral solutions and seven different patterns of integral solutions are illustrated. A choice of 
interesting relations between the solutions and special numbers, namely, pyramidal numbers, pronic 
numbers, Stellaoctangular numbers, Gnomonic numbers, polygonal numbers, four dimensional 
figurate numbers are exhibited. 

KEYWORDS: Octic non-homogeneous equation, Pyramidal numbers, Pronic numbers, 
Fourth, fifth and sixth dimensional figurate numbers. 

Notations: 

 ௠,௡- Polygonal number of rank n with size mݐ .1
2. ܵ ௡ܱ- Stella Octangula number of rank n 
 .௡- Pronic number of rank n݋ݎܲ .3
 .௡- Gnomonic number of rank nܩ .4
ܥ .5 ௡ܲ

௠- Centered Pyramidal number of rank n with size m. 
 .௡- Jacobsthal number of rank nܬ .6
7. ݆௡- Jacobsthal-Lucas number of rank n. 
 ௡- Kynea number of rank nݕ݇ .8
ܨ .9 ସܰ

଺- Four dimensional hexagonal figurate number of rank n. 
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1. INTRODUCTION 

 The theory of diophantine equations offers a rich selection of absorbing problems. In 

particular, homogeneous and non-homogeneous equations of higher degree have aroused the interest 

of numerous mathematicians since archeological find [1-4]. In [5-12] heptic equation with three, four 

and five unknowns are analyzed. This communication analyses a non-homogeneous octic equation 

with five unknowns given by (ݔ − ଷݔ)(ݕ + (ଷݕ = ଶݓ)12 −  ଶ)ܶ଺ for determining its infinitely݌

many non-zero integer quintuples (ݓ,ݕ,ݔ,  satisfying the above equation are obtained. Various (ܶ,݌

interesting properties among the values of x, y, p, w and T are offered. 

2. METHOD OF ANALYSIS: 
The non-homogeneous octic equation with five unknowns to be solved for its distinct non-

zero integral solutions is 

ݔ) − ଷݔ)(ݕ + (ଷݕ = ଶݓ)12 −  ଶ)ܶ଺    --- (1)݌

Introducing the linear transformations 

ݔ = ݑ + ݓ					,ݒ = ݒݑ + 1	 

ݕ = ݑ − ݌					,ݒ = ݒݑ − 1      --- (2) 

in (1) leads to 

ଶݑ  + ଶݒ3 = 12ܶ଺       --- (3) 

 Different methods of obtaining the patterns of integers solutions to (1) are illustrated below. 

Pattern1: 

Imagine that  ܶ = ܽଶ + 3ܾଶ     --- (4) 

Mark 12 as  

 12 = (ଷ௡ା௡௜√ଷ)(ଷ௡ି௡௜√ଷ)
௡మ

      --- (5) 

using (4), (5) in (3) and applying the way of factorization, classify 

ݑ  + ݒ3√݅ = ൫3݊ + ݊݅√3൯(ߙ + (ߚ3√݅     --- (6) 

Where ߙ + ߚ3√݅ = (ܽ + ݅√3ܾ)଺ from which we have 

ߙ  = ܽ଺ − 45ܽସܾଶ + 135ܽଶܾସ − 27ܾ଺ 

ߚ  = 6ܽହܾ − 60ܽଷܾଷ + 54ܾܽହ     --- (7) 
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Equating the real and imaginary parts in (6), we have 

ݑ  = ߙ3 −   ߚ3

ݒ  = ߙ +  (8) ---        ߚ3

Using (8) and (2) the values of x, y, w, p and T are given by 

ݔ  = ,ܽ)ݔ ܾ) =  ߙ4

ݕ  = (ܾ,ܽ)ݕ = ߙ2 −       ߚ6

݌  = ,ܽ)݌ ܾ) = ଶߙ3 − ଶߚ9 + ߚߙ6 − 1      

ݓ  = (ܾ,ܽ)ݓ = ଶߙ3 − ଶߚ9 + ߚߙ6 + 1  

 ܶ = ܶ(ܽ,ܾ) = ܽଶ + 3ܾଶ      

A few interesting properties observed are as follows. 

(ܽ,1)ݔ .1 − (ܽ,1)ݕ2 − 1296൫ ௔ܲ
ହ ∗ ସܶ,௔൯ + ܨ7776 ௔ܰ

ସ + ௔݋45ܶ +  ௔݋ݎ1233ܲ

≡  (3285	݀݋݉)270−

,ܽ)ݕ .2 1) + ܥ)2 ௔ܲ
଺)ଶ + ܨ108 ௔ܰ

ସ − 180 ସܶ,௔ = 60 

,ܾ)ݔ .3 1)− ௕݋ܵ)2 ∗ (௕ݎܽݐܵ − 576ܲ ௕ܶ + ௕ܪܱ	564 + ௕݋ݎ276ܲ − ௕݋݊ܩ195 = 195 

4. ܶ(2௕, 2௕)is a square number. 

Pattern 2: 
Equ (3) can be written as  

ଶݑ  + ଶݒ3 = 12ܶ଺ ∗ 1      --- (9) 

Mark 1 as  

 1 = (௡ା௡௜√ଷ)(௡ି௡௜√ଷ)
(ଶ௡)మ

       --- (10) 

Substituting (4), (5) and (12) in (11) and employing the factorization method, define 

ݑ  + ݒ3√݅ = ଵ
ଶ௡మ

൛൫3݊ + ݅√3݊൯൫݊ + ݊݅√3൯ൟ൫ߙ +  ൯  --- (11)ߚ3√݅

Equating real and imaginary parts, we have 

ݑ  =  ߚ6−

ݒ  =  (12) ---        ߙ2

Using (12) in (2) the values of x, y, w, p and T are given by 
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ݔ  = ,ܽ)ݔ ܾ) = ߙ2 −  ߚ6

ݕ  = (ܾ,ܽ)ݕ = ߙ2− −   ߚ6

ݓ  = (ܾ,ܽ)ݓ = ߚߙ12− + 1     

݌  = ,ܽ)݌ ܾ) = ߚߙ12− − 1      

 ܶ = ܶ(ܽ,ܾ) = ܽଶ + 3ܾଶ  

A few interesting properties observed are as follows. 

,ܽ)ݔ .1 1)− ,ܽ)ݕ 1)− ଶ(௔ܾݑܥ)4 + ௔ݍܶܤ180 − 540 ସܶ,௔ + 108 = 0 

(ܾ,1)ݔ .2 + (ܾ,1)ݓ + (ܾ,1)݌ + ௕ݔ݁ܰ)162 ∗ −(௕݋݊ܩ ௕ݍܶܤ2430 − ܥ3420 ௕ܲ
଺ ≡ 

 (666	݀݋݉)160−

,ܽ)ݕ .3 2) + ܥ)2 ௕ܲ
଺)ଶ − ܨ4320 ௔ܰ

ସ + 3960 ସܶ,௔ = 96 

4. ܶ(2௔, 2௔ିଵ) − ௔ݕ݇ + ݆ଶ௔ାଵ − ଶ௔ିଶܬ9 + 3 = 0 

Pattern 3: 
Equ (3) can be written as  

ଶݑ  + ଶݒ3 = 4 ∗ 3ܶ଺       --- (13) 

Mark 4 and 3 as  

 4 = (௡ା௡௜√ଷ)(௡ି௡௜√ଷ)
௡మ

        

3 = (ଷ௡ା௡௜√ଷ)(ଷ௡ି௡௜√ଷ)
ସ௡మ

      --- (14) 

 Following a similar method as in pattern 2 and the corresponding solutions of (1) are same as 

in pattern 2.  

Pattern 4: 
Equ (3) can be written as  

ଶݑ  + ଶݒ3 = 4 ∗ 3ܶ଺ ∗ 1      --- (15) 

Substituting (4), (10) and (14) in (15) and employing the method of factorization define, 

ݑ  + ݒ3√݅ = ଵ
ସ௡య

൛൫݊ + ݊݅√3൯൫3݊ + ݊݅√3൯(݊ + ݊݅√3)ൟ൫ߙ +  ൯ --- (16)ߚ3√݅

Equating the real and imaginary parts, we have 
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ݑ  = ߙ3− −  ߚ3

ݒ  = ߙ −  (17) ---        ߚ3

Using (17) in (2) the values of x, y, w, p and T are given by 

ݔ  = ,ܽ)ݔ ܾ) = ߙ2− −  ߚ6

ݕ  = (ܾ,ܽ)ݕ =    ߙ4−

ݓ  = (ܾ,ܽ)ݓ = ଶߙ3− + ߚߙ6 + ଶߚ9 + 1    

݌  = ,ܽ)݌ ܾ) = ଶߙ3− + ߚߙ6 + ଶߚ9 − 1      

 ܶ = ܶ(ܽ,ܾ) = ܽଶ + 3ܾଶ  

A few interesting properties observed are as follows. 

(ܾ,2)ݔ2 .1 − (ܾ,2)ݕ + 648൫ܿݐଶ,௕ ∗ ܥ ௕ܲ
ଷ൯ − ܨ7776 ௕ܰ

ସ − 25056 ௕ܲ
ଷ + 1404 ଵ଼ܶ,௕ − 

௕݋݊ܩ9342 = 9342 

,ܽ)ݔ .2 3)− ௔݋ܵ ∗ ௔݋ܶ + 30൫ܥ ௔ܲ
଺൯

ଶ
− 66൫ݐܥଶ,௔ ∗ ܥ ௔ܲ

ଷ൯ − 17088ܲ ௔ܶ + ௔ܪ26550ܶ − 

16469 ସܶ,௔ ≡  (4506	݀݋݉)	144

3. ܶ(2ܽଶ + 1, 2ܽଶ) − ௔݋ݎܲ)8 ∗ −(௔ܵܥ ଶ,௔ݐܥ12 + ௔݋݊ܩ10 + ݆ସ + 4 = 0 

4. ܶ(2௔, 2௔ିଵ) − ଶ௔ିଶܬ9 − ݆ଶ௔ − 2 = 0 

Pattern 5: 

Let ݑ = 6ܷ 

ݒ  = 2ܸ        --- (18) 

Using (18) in (3) we get, 

 3ܷଶ + ܸଶ = ܶ଺       --- (19) 

Using (4) and (19) and employing the method of factorization define, 

 ܸ + ݅√3ܷ = ߙ +  (20) ---      ߚ3√݅

Equating the real and imaginary parts in (20), we get 

 ܸ =  ߙ

 ܷ =  (21) ---         ߚ
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Substituting (21) in (18) and using (2), the non-zero distinct integral solutions (1) are 

ݔ  = ,ܽ)ݔ ܾ) = ߚ6 +  ߙ2

ݕ  = (ܾ,ܽ)ݕ = ߚ6 −    ߙ2

ݓ  = (ܾ,ܽ)ݓ = ߚߙ12 + 1    

݌  = ,ܽ)݌ ܾ) = ߚߙ12 − 1      

 ܶ = ܶ(ܽ,ܾ) = ܽଶ + 3ܾଶ  

Pattern 6: 
By means of (19) can be written as 

 3ܷଶ + ܸଶ = ܶ଺ ∗ 1       --- (22) 

Using (4) and (10) and following the procedure as presented in pattern 2, the corresponding 

non-zero integral solutions to (1) are given by 

ݔ  = ,ܽ)ݔ ܾ) =  ߙ4

ݕ  = (ܾ,ܽ)ݕ = ߙ2 +   ߚ6

ݓ  = (ܾ,ܽ)ݓ = ଶߙ3 − ߚߙ6 − ଶߚ9 + 1    

݌  = ,ܽ)݌ ܾ) = ଶߙ3 − ߚߙ6 − ଶߚ9 − 1      

 ܶ = ܶ(ܽ,ܾ) = ܽଶ + 3ܾଶ  

3. CONCLUSION: 

 In this paper, we have made an effort to determine dissimilar patterns of non-zero distinct 

integer solutions to the non-homogeneous octic equation with five unknowns. As the octic equations 

are rich in variety, one may search for other forms of octic equation with variables greater than or 

equal to five and obtain their corresponding properties. 
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