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ABSTRACT: 
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INTRODUCTION OF HOMOTOPY ANALYSIS METHOD: 

This method is proposed by Liao in 19923-6. The following differential equations are 

considered by us for this method, 

 , 0, 1, 2, ,i iN x t nu i    
         (1)

 

Where iN considered as a nonlinear operators, ( x , t ) and   ,iu x t  are pair of independent variables 

and unknown functions respectively. 

The so-called zero-order deformation equations defined by 

       ,01 , ,; , , ,;i i i i iq L x t q u x t qc N x t q              (2)
 

Where q  is an embedding parameter which lies between 0,1 , ic and L are nonzero auxiliary 

functions and auxiliary linear operator respectively, initial guesses of  ,iu x t are  ,0 ,iu x t and

 , , ;i x t q   are unknown functions. 

We have freedom to choose auxiliary objects such as ic  and L in HAM, which is main importance of 

this method. 

When 0 1q and q  we get by (2), 

       ,0, , ;0 , , , ;1 ,i i i ix t u x t and x t u x t    

By Taylor’s series expansion  
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If we choose the auxiliary parameter ic ,the auxiliary functions, the auxiliary linear operator and  

initial guesses properly than the series equation (3) converges at 1q   
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This must be one of the solutions of the original nonlinear equations. 

If we differentiate equation (2) m  times with respect to the embedding parameter q  and the setting 

0q   and finally dividing them by !m  than we get the so-called 푚 Order deformation equations 

like this 

   , , 1 , , 1), , ( )i m m i m i i m i mL x t x tu u uh R     


      (6)
 

Where  
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m is characteristic function. 

FRACTIONAL DERIVATIVE ACCORDING TO RIEMANN-LIOUVILLE: 
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          (8) 

Where, Gamma possesses a standard definite. Inverse fractional differential operator notation is J 
 

 

SOLUTION OF FRACTIONAL KDV EQUATION BY USING THE HOMOTOPY 

ANALYSIS METHOD: 0 1   

Let following be the KDV equation [9] 
2

3 0u u
xt





 
 

           (9)
 

With initial condition ( , 0) 3u x x  

First of all we want to define linear and nonlinear terms like as 
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         (11) 

Assume initial approximation  
3

0 ( , ) 6u x t x tx      
By using the procedure of Homotopy Analysis Method, the zeroth-order deformation equations for 

(1) can be written as 

       0 01 , ; , , ;q x t q u x t qc N x t q                           (12)
 

For푞	 = 	0and 푞	 = 	1, it can be written as 

   0, ;0 ,x t u x t     ,    , ;1 ,x t u x t   

The 푚푡ℎ order deformation equations can be written as 

      1 0 1, ,m m m m mL u x t u x t c R u   
                 (13)

 

Where  
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        (14) 

The approximate solution of equation (9) can be written as 

     0
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                   (15)

 

Where      1
1 0 1, ,m m m m mu x t u x t c L R u 
                      (16) 

If we take m=1 in (14),  
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If we take two terms approximation than we get  
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If we take some special case, 
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CONVERGENCE OF HOMOTOPY ANALYSIS METHOD (HAM): 

Theorem:-As long as the series equation (15) is convergent where ( , )mu x t  is governed by the mth 

order deformation equation (13) under (14) must be the solution of (9) 5. 

Proof: Let the series       0
1

, , ,m
m

u x t u x t u x t




    be convergent. 

Then                                                 lim , 0mm
u x t




                (19) 

Now we have    
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   (20) 

According to the definition of linear operators, we can write 

       1 1
1 1

, , , , (0) 0m m m m m m
m m
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From the above equation and equation (13) 

   1 00, 0m mR u c  



                  (21)

 

From (14), 
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(22) 

From (21) and (22), proof of the theorem is completed. 
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