

Research article

Available online www.ijsrr.org ISSN: 2279–0543

International Journal of Scientific Research and Reviews

Difference Cordial Labeling in context of Vertex Switching and Ringsum of a Graphs

Parsania Nidhi M.^{1*}, Rokad A. H.²

¹Department of Applied Science & Humanities, VVP Engineering College, Rajkot, Gujarat, INDIA ²Department of Mathematics, School of Engineering, R. K. University, Rajkot - 360005, Gujarat, INDIA *Email: <u>nidhi781992@gmail.com</u>

ABSTRACT:

Suppose G be a (m, n) graph. Suppose f be a map from h(G) to $\{1,2,...,m\}$. For each edge xy assign, the label |h(x) - h(y)|. h is difference cordial if f is 1-1 and $|e_h(0) - e_h(1)| \le 1$, where $e_h(1)$ and $e_h(0)$ denote the number of edges with labeled 1 except labeled with 1 respectively. A graph which admit difference cordial labeling is called a difference cordial graph.

- In this paper we prove the following results.
- 1. Vertex switching of cycle is difference cordial.
- 2. Vertex switching of cycle with one chord is difference cordial.
- 3. Vertex switching of cycle with twin chords is difference cordial.
- 4. Vertex switching of path graph is difference cordial.
- 5. Ring sum of star graph and cycle graph is difference cordial.
- 6. Ring sum of star graph and cycle with one chord is difference cordial.
- 7. Ring sum of star graph and gear graph is difference cordial.
- 8. Ring sum of star graph and path graph is difference cordial.

KEYWORD: Difference cordial labelling, Vertex switching and Ring sum.

MSC AMS Classification:05C78

*Corresponding author

Nidhi M. Parsania

Department of Applied Science & Humanities,

VVP Engineering College, Rajkot, Gujarat, INDIA

nidhi781992@gmail.com

INTRODUCTION:

The graph consider in this paper are finite, undirected and simple graphs only. The percept of Difference cordial labeling was brought out by R. Kala, S. SathishNarayanan andR. Ponraj⁴.Notation and definitions not described here are used in the sense of Gross and Yellen³.Gallian² published and updateda dynamic survey of graph labeling every year.Rokad and Ghodasara ⁵ proved that vertex switching of petersen graph, switching of wheel graph, switching of flower graph, switching of gear graph and switching of shell graph are cordial. Rokad and Ghodasara ⁶ proved that Ring sum of star graph and gear graph, Ring sum of star graph and cycle graph,Ring sum of star graph and cycle with one chord are 3-equitable graphs.

Definition 1 The vertex switching Gv of a graph G is get by taking a vertex v of G, removing all the edges incident to v and adding edges joining v to every other vertex which is not adjacent to v in G.

Definition 2 Ring sum $G_1 \bigoplus G_2$ of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the graph $G_1 \bigoplus G_2 = (V_1 \cup V_2, (E_1 \cup E_2) - (E_1 \cap E_2))$.

Theorem 1:Switching of vertex of C_n is difference cordial.

Proof:Suppose $G = C_n$ and $z_1, z_2,...,z_n$ be successive vertices of C_n . Suppose $(C_n)_{z1}$ represent the switched vertex of C_n with respect to z_1 of C_n . Consider z_1 as the switched vertex and we start labeling pattern from z_1 . Then |E(G)| = 2n - 5 and |V(G)| = n. We define the labeling function h: $V((C_n)z_1) \rightarrow \{1,2,...,n\}$, as follows

$$h(z_i) = i, i \in [1, n].$$

Since $e_h(1) = n - 2$ and $e_h(0) = n - 3$.

Hence, Switching of vertex of cycle C_nis difference cordial.

Example 1:Switching of vertex of cycle C_7 admitting difference cordial labeling is shown in Figure 1.

Theorem 2:Switching of vertex of cycle C_n ($n \ge 4$, $n \in N$) having one chord admitsdivisor cordial labeling, where chord makea triangle with two edges of cycle C_n .

Proof: Suppose G be the cycle having one chord. Suppose z_1 , z_2 ,..., z_n be the successive vertices of cycle C_n and $e = z_n z_2$ be the chord of cycle C_n . The edges $e = z_n z_2$, $e_1 = z_2 z_1$, $e_2 = z_n z_1$ form a triangle.

Now the graph get by switching of vertices z_i and z_j of degree 2 are isomorphic to each other for all i and j. Similarly the graph get by switching of vertices z_i and z_j of degree 3 are isomorphic to each other for all i and j.Hence we need to talk about two cases: (i) switching of an arbitrary vertex ofG of degree 3, (ii) switching of an arbitrary vertex of G of degree 2. Without detriment of generality suppose the switched vertex be z_1 (of either degree 3 or degree 2) and suppose G_{z_1} denote the switching of vertex of G with respect to vertex z_1 .

To define labeling function h: V (G_{z1}) \rightarrow {1,2,...,n} we consider the following cases.

Case I: Degree of z_1 is 2.

(Here the number of vertices is n and number of edges is 2n - 4.)

 $h(z_i) = i, i \in [1, n].$

Since $e_h(1) = e_h(0) = n - 2$.

Case II: Degree of x_1 is 3.

(Here the number of vertices is n and number of edges is 2n - 6.)

$$\begin{split} h(z_n) &= n - 1, \\ h(z_{n-1}) &= n \\ h(z_i) &= i, i \in [1, n - 2]. \\ \text{Since } e_h(1) &= e_h(0) = n - 3. \end{split}$$

Hence, Switching of vertex of cycle C_nhaving one chord admitsdivisor cordial labeling.

Example 2:

(a) Figure 2(a) shows switching of vertex of degree 2 of cycle C_8 having one chord admitting difference cordial labeling.

(b) Figure 2(b) shows switching of vertex of degree 3 of cycle C_8 having one chord admitting difference cordial labeling.

Theorem 3: Switching of vertex of cyclehaving twin chords $C_{n,3}$ admits difference cordial labeling.

Proof: Suppose G be the cycle having twin chords $C_{n,3}$. Suppose $x_1, x_2, ..., x_n$ be the successive

vertices of G. Suppose $e_1 = x_n x_2$ and $e_2 = x_n x_3$ be the chords of cycle C_n which form two triangles and one cycle Cn-2.

Now the graph get by switching of vertices x_i and x_j of degree 2 are isomorphic to each other for all i and j. Similarly the graph get by switching of vertices x_i and x_j of degree 3 are isomorphic to each other and the graphget by switching of vertices x_i and x_j of degree 4 are isomorphic to each other for all i and j. Hence we need to talk about three cases: (i) switching of an arbitrary vertex of G of degree 2, (ii) switching of an arbitrary vertex of Gof degree 3, (iii) switching of an arbitrary vertex of G of degree 4. With out detriment of generality suppose the switched vertex be x_1 and suppose G_{x_1} denote the switching of vertex of G with respect to vertex x_1 .

To define labeling function h: $V(G_{x1})$ {1,2,...,n} we consider the following cases.

Case 1: Degree of x_1 is 2

(Here the number of vertices is n and number of edges is 2n - 3.)

 $h(x_i) = i, i \in [1, n].$

Since $e_h(1) = n - 2$ and $e_h(0) = n - 1$.

Case 2: Degree of x_1 is 3

(Here the number of vertices is n and number of edges is 2n - 5.)

 $\mathbf{h}(\mathbf{x}_{n})=\mathbf{n-1},$

 $h(x_{n-1}) = n$

 $h(x_i)=i,\,i\in[1,n-2].$

Since $e_h(1) = n - 3$ and $e_h(0) = n - 2$.

Case 3: Degree of x_1 is 4

(Here the number of vertices is n and number of edges is 2n - 7.)

The labeling pattern is same as case - 2.

Since $e_h(1) = n - 3$ and $e_h(0) = n - 4$.

Thus, $|e_h(1) - e_h(0)| \le 1$.

Hence Switching of vertex of cyclehaving twin chords $C_{n,3}$ admits difference cordial labeling.

Example3:

(a) Figure 3(a) shows switching of vertex of degree 2 of cycle C₉having twin chords admitting difference cordial labeling.

(b)Figure 3(b) shows switching of vertex of degree 3 of cycle C₉having twin chords admitting difference cordial labeling.

(c) Figure 3(c) shows switching of vertex of degree 4 of cycle C₉having twin chords admitting difference cordial labeling.

Theorem 4: Vertex switching of a pendant vertex of pathP_n is difference cordial labeling. **Proof:** Suppose $z_1, z_2, ..., z_n$ be the vertices of path P_n. The graph G get by Switching of a pendant vertexx₁ in the path P_n. Then |E(G)| = 2n - 4& |V(G)| = n. We define labeling function h: V(G) {1,2,...,n} as follows. h(z_i) = i, i \in [1, n]. Then we have $e_h(1) = n - 2$ and $e_h(0) = n - 2$. Therefore $|e_h(1) - e_h(0)| \le 1$.

Hence switching of a pendant vertex in path P_n is difference cordial labeling.

Example 4:Switching of pendant vertex of pathP7admitting difference cordial labeling is shown in

Figure 4.

Theorem 5:Ring sum of star graph and cycle graph is difference cordial for all n.

Proof:Suppose V (G) = X \cup Y, where X = { $z_1, z_2, ..., z_n$ } be the vertex set of C_n and

 $Y = \{y = z_1, y_1, y_2, \dots, y_n\}$ be the vertex set of $K_{1,n}$. Here y_1, y_2, \dots, y_n are pendent vertices. Also|E (G)| = |V (G)| = 2n.

We define labeling function h: V(G) {1,2,...,2n} as follows.

$$\begin{split} h(z_1) &= 2, \\ h(z_2) &= 4, \\ h(z_i) &= i+2, i \in [3, n]. \\ h(y_1) &= 1, \\ h(y_2) &= 3, \\ h(y_i) &= n+i, i \in [3, n]. \\ \end{split}$$
Then in each case we have $e_h(1) = e_h(0) = n$. Therefore $|e_h(1) - e_h(0)| \leq 1$.

Hence Ring sum of star graph and cycle graph is difference cordial.

Example 5:Ring sum of star graphK_{1,7}and cycleC₇admitting difference cordial labeling is shown in Figure 5.

Theorem6.Ring sum of star graph and cycle with one chord is difference cordial, where chord forms a triangle with two edges of thecycle.

Proof. Suppose G be the cycle having one chord and suppose $e = z_2 z_n$ be the chord in G.Suppose V = XUY, where $X = \{z_1, z_2, ..., z_n\}$ be the vertexset of G and $Y = \{y = z_1, y_1, y_2, ..., y_n\}$ be the vertex set of star graph $K_{1,n}$. Here $y_1, y_2, ..., y_n$ are pendent vertices. Also |E(G)| = 2n + 1 & |V(G)| = 2n.

We define labeling function h: V(G) {1,2,...,2n} as follows.

The labeling pattern is same as **Theorem-5**.

Then we have $e_h(1) = n$ and $e_h(0) = n + 1$.

Therefore $|e_h(1) - e_h(0)| \le 1$.

Hence, Ring sum of star graph and cycle with one chord is difference cordial.

Example 6:Ring sum of $K_{1,8}$ and cycle C_8 with one chord having difference cordial labeling is shown in Figure 6.

Theorem 7:Ring sum of star graph and gear graph is difference cordialfor all n.

Proof: SupposeV(G) = XUY, where $X = \{x_0, x_1, x_2, ..., x_{2n}\}$ with apex x_0 and $x_1, x_2, ..., x_{2n}$ are other vertices of G_n , where deg $(x_i) = 2$ when i is even and deg $(x_i) = 3$ when i is odd and $Y = \{x_1 = y, y_1, y_2, ..., y_n\}$ be the vertex set of $K_{1, n}$. Here $y_1, y_2, ..., y_n$ are pendent vertices and y is the apex vertex of $K_{1,n}$. Also|E(G)| = 4n & |V(G)| = 3n + 1. We define labeling function h: V(G) $\{1, 2, ..., 1 + 3n\}$ as follows. h $(u_0) = 2n + 1$, h $(u_{2n}) = 1$, h $(u_1) = 2$, h $(u_i) = i+1$, $i \in [2, n]$. h $(v_i) = 2n + i + 1$, $i \in [1, n]$. Then we have $e_h(1) = e_h(0) = 2n$. Therefore $|e_h(1) - e_h(0)| \le 1$. Hence,Ring sum of star graph and gear graph is difference cordial.

Example 7:Ring sum of K_{1,7} and G₇ is difference cordial is shown in Figure 7.

Theorem 8: Ring sum of star graph and path graph is difference cordial for all n.

Proof:Suppose $V(P_n \bigoplus K_{1,n}) = X \cup Y$, where $X = \{x_1, x_2, ..., x_n\}$ is the vertex set of P_n and $Y = \{y = x_1, y_1, y_2, ..., y_n\}$ is the vertex set of $K_{1,n}$. Here $y_1, y_2, ..., y_n$ are the pendant vertices and yis the apex vertex. Also $|E(P_n \bigoplus K_{1,n})| = 2n - 1$ and $|V(P_n \bigoplus K_{1,n})| = 2n$. We define labeling function h: V(G) $\{1, 2, ..., 2n\}$ as follows. h(x_i) = i, i $\in [1, n]$. h(y_i) = n + i, i $\in [1, n]$. Then we have $e_h(1) = n - 1$ and $e_h(0) = n$.

Therefore $|e_h(1) - e_h(0)| \le 1$.

Hence, Ring sum of star graph and path graph is difference cordial.

Example 8:Ring sum of K_{1,7} and P₇ is difference cordial is shown in Figure 8.

Figure 8

References

1. Cahit, Cordial graphs: A weaker version of graceful and Harmonic graphs, Ars Combinatoria, 1987;23: 201 – 207.

2. J.A.Gallian, A dynamic survey of graph labeling, The Electronics Journal ofCombinatorics, 16(2013) DS 61 – 308.

3. J.Gross and J.Yellen, Graph Theory and its Applications, CRC Press, 1999.

4. R. Ponraj, S. Sathish Narayanan and R. Kala, Difference Cordial Labeling of Graphs, Global Journal of Mathematical Sciences: Theory and Practical, Volume 5, No. 3 (2013), pp. 185-196.

5.G. V. Ghodasara and A. H. Rokad, Cordial Labeling in Context of Vertex Switching ofSpecial

Graphs, International Journal of Mathematical Sciences, ISSN: 2051-5995, Vol.33, Issue.2.

6. A. H. Rokad and G. V. Ghodasara, 3-Equitable Labeling in Context of Ring Sum of Graphs,

Research & Reviews: Discrete Mathematical Structures, Volume 2, Issue 3.