I ntemational J amal of Sientific Reserchand Reiens

Difference Cordial Labeling in context of Vertex Switching and Ringsum of a Graphs

Parsania Nidhi M. ${ }^{1{ }^{*}}$, Rokad A. H. ${ }^{2}$
${ }^{1}$ Department of Applied Science \& Humanities,VVP Engineering College, Rajkot, Gujarat, INDIA
${ }^{2}$ Department of Mathematics, School of Engineering, R. K. University, Rajkot - 360005, Gujarat, INDIA *Email: nidhi781992@gmail.com

Abstract

: Suppose G be a (m, n) graph. Suppose f be a map from $\mathrm{h}(\mathrm{G})$ to $\{1,2, \ldots, \mathrm{~m}\}$. For each edge xy assign, the label $|h(x)-h(y)|$. h is difference cordial if f is $1-1$ and $\left|e_{h}(0)-e_{h}(1)\right| \leq 1$, where $e_{h}(1)$ and $e_{h}(0)$ denote the number of edges with labeled 1 except labeled with 1 respectively. A graph which admit difference cordial labeling is called a difference cordial graph.

In this paper we prove the following results. 1. Vertex switching of cycle is difference cordial. 2. Vertex switching of cycle with one chord is difference cordial. 3. Vertex switching of cycle with twin chords is difference cordial. 4. Vertex switching of path graph is difference cordial. 5. Ring sum of star graph and cycle graph is difference cordial. 6. Ring sum of star graph and cycle with one chord is difference cordial. 7. Ring sum of star graph and gear graph is difference cordial. 8. Ring sum of star graph and path graph is difference cordial.

KEYWORD: Difference cordial labelling, Vertex switching and Ring sum.
MSC AMS Classification:05C78

[^0]
INTRODUCTION:

The graph consider in this paper are finite, undirected and simple graphs only. The percept of Difference cordial labeling was brought out by R. Kala, S. SathishNarayanan andR. Ponraj ${ }^{4}$.Notation and definitions not described here are used in the sense of Gross and Yellen ${ }^{3}$.Gallian ${ }^{2}$ published and updateda dynamic survey of graph labeling every year.Rokad and Ghodasara ${ }^{5}$ proved that vertex switching of petersen graph, switching of wheel graph, switching of flower graph, switching of gear graph and switching of shell graph are cordial. Rokad and Ghodasara ${ }^{6}$ proved that Ring sum of star graph and gear graph, Ring sum of star graph and cycle graph,Ring sum of star graph and cycle with one chord are 3-equitable graphs.
Definition 1 The vertex switching Gv of a graph G is get by taking a vertex vof G, removing all the edges incident to v and adding edges joining v to every other vertex which is not adjacent to v in G .

Definition 2 Ring sum $G_{1} \oplus G_{2}$ of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the graph $\mathrm{G}_{1} \oplus \mathrm{G}_{2}=\left(\mathrm{V}_{1} \cup \mathrm{~V}_{2},\left(\mathrm{E}_{1} \cup \mathrm{E}_{2}\right)-\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}\right)\right)$.
Theorem 1:Switching of vertex of C_{n} is difference cordial.
Proof:Suppose $G=C_{n}$ and $z_{1}, z_{2}, \ldots, z_{n}$ be successive vertices of C_{n}. Suppose $\left(C_{n}\right)_{z 1}$ represent the switched vertex of C_{n} with respect to Z_{1} of C_{n}. Consider Z_{1} as the switched vertex and we start labeling pattern from z_{1}. Then $|\mathrm{E}(\mathrm{G})|=2 \mathrm{n}-5$ and $|\mathrm{V}(\mathrm{G})|=\mathrm{n}$.
We define the labeling function $\mathrm{h}: \mathrm{V}\left(\left(\mathrm{C}_{\mathrm{n}}\right) \mathrm{z}_{1}\right) \rightarrow\{1,2, \ldots, \mathrm{n}\}$, as follows
$h\left(z_{i}\right)=i, i \in[1, n]$.
Since $e_{h}(1)=n-2$ and $e_{h}(0)=n-3$.
Hence, Switching of vertex of cycle C_{n} is difference cordial.
Example 1:Switching of vertex of cycle C_{7} admitting difference cordial labeling is shown in Figure 1.

Figure 1

Theorem 2:Switching of vertex ofcycle $C_{n}(n \geq 4, n \in N)$ having one chord admitsdivisor cordial labeling, where chord makea triangle with two edges of cycle C_{n}.
Proof: Suppose G be the cycle having one chord. Supposez $z_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{n}}$ be the successive vertices of cycle C_{n} and $e=z_{n} z_{2}$ be the chord of cycle C_{n}. The edges $e=z_{n} z_{2}, e_{1}=z_{2} z_{1}, e_{2}=z_{n} z_{1}$ form a triangle.

Now the graph get by switching of vertices z_{i} and z_{j} of degree 2 areisomorphic to each other for all i and j. Similarly the graph get by switching of vertices z_{i} and z_{j} of degree 3 are isomorphic to each other for all i and j.Hence we need to talk about two cases: (i) switching of an arbitrary vertex ofG of degree 3, (ii) switching of an arbitrary vertex of G of degree 2 . Without detriment of generality suppose the switched vertex be z_{1} (of either degree 3 or degree 2) and suppose $\mathrm{G}_{\mathrm{z} 1}$ denote the switching of vertex of G with respect to vertex z_{1}.
To define labeling function $\mathrm{h}: \mathrm{V}\left(\mathrm{G}_{\mathrm{z} 1}\right) \rightarrow\{1,2, \ldots, \mathrm{n}\}$ we consider the following cases.
Case I: Degree of z_{1} is 2 .
(Here the number of vertices is n and number of edges is $2 \mathrm{n}-4$.)
$h\left(z_{i}\right)=i, i \in[1, n]$.
Since $\mathrm{e}_{\mathrm{h}}(1)=\mathrm{e}_{\mathrm{h}}(0)=\mathrm{n}-2$.
Case II: Degree of x_{1} is 3 .
(Here the number of vertices is n and number of edges is $2 \mathrm{n}-6$.)
$\mathrm{h}\left(\mathrm{z}_{\mathrm{n}}\right)=\mathrm{n}-1$,
$\mathrm{h}\left(\mathrm{Z}_{\mathrm{n}-1}\right)=\mathrm{n}$
$h\left(z_{i}\right)=i, i \in[1, n-2]$.
Since $e_{h}(1)=e_{h}(0)=n-3$.
Hence, Switching of vertex of cycle C_{n} having one chord admitsdivisor cordial labeling.

Example 2:

(a) Figure 2(a) shows switching of vertex of degree 2 of cycle C_{8} having one chord admitting difference cordial labeling.
(b) Figure 2(b) shows switching of vertex of degree 3 of cycle C_{8} having one chord admittingdifference cordial labeling.

Theorem 3: Switching of vertex of cyclehaving twin chords $C_{n, 3}$ admits difference cordial labeling.

Proof: Suppose G be the cycle having twin chords $C_{n, 3}$. Supposex $x_{1}, x_{2}, \ldots, x_{n}$ be the successive
vertices of G. Suppose $e_{1}=x_{n} x_{2}$ and $e_{2}=x_{n} x_{3}$ be the chords of cycle C_{n} which form two triangles and one cycle Cn-2.

Now the graph get by switching of vertices x_{i} and x_{j} of degree 2 areisomorphic to each other for all i and j. Similarly the graph get by switching of vertices x_{i} and x_{j} of degree 3 are isomorphic to each other and the graphget by switching of vertices x_{i} and x_{j} of degree 4 are isomorphic to eachother for all i and j . Hence we need to talk about three cases: (i) switching ofan arbitrary vertex of G of degree 2, (ii) switching of an arbitrary vertex of Gof degree 3, (iii) switching of an arbitrary vertex of G of degree 4 . With out detriment of generality suppose the switched vertex be x_{1} and suppose $G_{x 1}$ denote the switching of vertex of G with respect to vertex x_{1}.
To define labeling function $\mathrm{h}: \mathrm{V}\left(\mathrm{G}_{\mathrm{x} 1}\right)\{1,2, \ldots, \mathrm{n}\}$ we consider the following cases.
Case 1: Degree of x_{1} is2
(Here the number of vertices is n and number of edges is $2 \mathrm{n}-3$.)
$h\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{i}, \mathrm{i} \in[1, \mathrm{n}]$.
Since $\mathrm{e}_{\mathrm{h}}(1)=\mathrm{n}-2$ and $\mathrm{e}_{\mathrm{h}}(0)=\mathrm{n}-1$.
Case 2: Degree of x_{1} is 3
(Here the number of vertices is n and number of edges is $2 n-5$.)
$\mathrm{h}\left(\mathrm{x}_{\mathrm{n}}\right)=\mathrm{n}-1$,
$h\left(\mathrm{x}_{\mathrm{n}-1}\right)=\mathrm{n}$
$\mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{i}, \mathrm{i} \in[1, \mathrm{n}-2]$.
Since $\mathrm{e}_{\mathrm{h}}(1)=\mathrm{n}-3$ and $\mathrm{e}_{\mathrm{h}}(0)=\mathrm{n}-2$.

Case 3: Degree of x_{1} is 4
(Here the number of vertices is n and number of edges is $2 n-7$.)
The labeling pattern is same as case -2 .
Since $\mathrm{e}_{\mathrm{h}}(1)=\mathrm{n}-3$ and $\mathrm{e}_{\mathrm{h}}(0)=\mathrm{n}-4$.
Thus, $\left|e_{h}(1)-e_{h}(0)\right| \leq 1$.
Hence Switching of vertex of cyclehaving twin chords $\mathrm{C}_{\mathrm{n}, 3}$ admits difference cordial labeling.

Example3:

(a) Figure 3(a) shows switching of vertex of degree 2 of cycle C9having twin chords admitting difference cordial labeling.
(b)Figure 3(b) shows switching of vertex of degree 3 of cycle C_{9} having twin chords admitting difference cordial labeling.
(c) Figure 3(c) shows switching of vertex of degree 4 of cycle C9having twin chords admitting difference cordial labeling.

Theorem 4: Vertex switching of a pendant vertex of path P_{n} is difference cordial labeling.
Proof: Suppose $z_{1}, z_{2}, \ldots, z_{n}$ be the vertices of path P_{n}. The graph G get by Switching of a pendant vertexx ${ }_{1}$ in the path P_{n}. Then $|E(G)|=2 n-4 \&|V(G)|=n$.
We define labeling function $h: V(G)\{1,2, \ldots, n\}$ as follows.
$h\left(z_{i}\right)=i, i \in[1, n]$.
Then we have $\mathrm{e}_{\mathrm{h}}(1)=\mathrm{n}-2$ and $\mathrm{e}_{\mathrm{h}}(0)=\mathrm{n}-2$.
Therefore $\left|e_{h}(1)-e_{h}(0)\right| \leq 1$.
Hence switching of a pendant vertex in path P_{n} isdifference cordial labeling.

Example 4:Switching of pendant vertex of pathP ${ }_{7}$ admitting difference cordial labeling is shown in Figure 4.

Figure 4
Theorem 5: Ring sum of star graph and cycle graph is difference cordial for all n .
Proof:Suppose $V(G)=X \cup Y$, where $X=\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ be the vertex set of C_{n} and $Y=\left\{y=z_{1}, y_{1}, y_{2}, \ldots, y_{n}\right\}$ be the vertex set of $K_{1, n}$. Here $y_{1}, y_{2}, \ldots, y_{n}$ are pendent vertices.
Also|E (G) $|=|\mathrm{V}(\mathrm{G})|=2 \mathrm{n}$.
We define labeling function $\mathrm{h}: \mathrm{V}(\mathrm{G})\{1,2, \ldots, 2 \mathrm{n}\}$ as follows.
$\mathrm{h}\left(\mathrm{z}_{1}\right)=2$,
$h\left(\mathrm{z}_{2}\right)=4$,
$h\left(z_{i}\right)=i+2, i \in[3, n]$.
$h\left(y_{1}\right)=1$,
$h\left(y_{2}\right)=3$,
$\mathrm{h}\left(\mathrm{y}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i}, \mathrm{i} \in[3, \mathrm{n}]$.
Then in each case we have $e_{h}(1)=e_{h}(0)=n$.
Therefore $\left|e_{h}(1)-e_{h}(0)\right| \leq 1$.
Hence Ring sum of star graph and cycle graph is difference cordial.

Example 5:Ring sum of star graph $\mathrm{K}_{1,7}$ and cycleC ${ }_{7}$ admitting difference cordial labeling is shown in Figure 5.

Figure 5

Theorem6.Ring sum of star graph and cycle with one chord is difference cordial, where chord forms a triangle with two edges of thecycle.
Proof. Suppose G be the cycle having one chord and suppose $\mathrm{e}=\mathrm{z}_{2} \mathrm{z}_{\mathrm{n}}$ be the chord in G.Suppose V $=X \cup Y$, where $X=\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ be the vertexset of G and $Y=\left\{y=z_{1}, y_{1}, y_{2}, \ldots, y_{n}\right\}$ be the vertex set of star graph $K_{1, n}$. Here $_{1}, y_{2}, \ldots, y_{n}$ are pendent vertices.Also $|E(G)|=2 n+1 \&$ $|\mathrm{V}(\mathrm{G})|=2 \mathrm{n}$.
We define labeling function $\mathrm{h}: \mathrm{V}(\mathrm{G})\{1,2, \ldots, 2 \mathrm{n}\}$ as follows.
The labeling pattern is same as Theorem-5.
Then we have $\mathrm{e}_{\mathrm{h}}(1)=\mathrm{n} \operatorname{ande}_{\mathrm{h}}(0)=\mathrm{n}+1$.
Therefore $\left|e_{h}(1)-e_{h}(0)\right| \leq 1$.
Hence, Ring sum of star graph and cycle with one chord is difference cordial.
Example 6:Ring sum of $\mathrm{K}_{1,8}$ and cycle C_{8} with one chord having difference cordial labeling is shown in Figure 6.

Figure 6
Theorem 7:Ring sum of star graph and gear graph is difference cordialfor all n .
Proof: $\operatorname{SupposeV}(G)=X \cup Y$, where $X=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{2 n}\right\}$ with apex x_{0} and $x_{1}, x_{2}, \ldots \ldots, x_{2 n}$ are other vertices of G_{n},where $\operatorname{deg}\left(x_{i}\right)=2$ when i is even and $\operatorname{deg}\left(\mathrm{x}_{\mathrm{i}}\right)=3$ when i is odd and $\mathrm{Y}=\left\{\mathrm{x}_{1}=\mathrm{y}, \mathrm{y}_{1}\right.$, $\left.y_{2}, \ldots, y_{n}\right\}$ be the vertex set of $K_{1, n}$. Here $y_{1}, y_{2}, \ldots, y_{n}$ are pendent vertices and y is the apex vertex of $\mathrm{K}_{1, \mathrm{n}} . \operatorname{Also}|\mathrm{E}(\mathrm{G})|=4 \mathrm{n} \&|\mathrm{~V}(\mathrm{G})|=3 \mathrm{n}+1$.
We define labeling function $\mathrm{h}: \mathrm{V}(\mathrm{G})\{1,2, \ldots, 1+3 \mathrm{n}\}$ as follows.
$\mathrm{h}\left(\mathrm{u}_{0}\right)=2 \mathrm{n}+1$,
$\mathrm{h}\left(\mathrm{u}_{2 \mathrm{n}}\right)=1$,
$h\left(\mathrm{u}_{1}\right)=2$,
$h\left(u_{i}\right)=i+1, i \in[2, n]$.
$h\left(v_{i}\right)=2 n+i+1, i \in[1, n]$.
Then we have $\mathrm{e}_{\mathrm{h}}(1)=\mathrm{e}_{\mathrm{h}}(0)=2 \mathrm{n}$.
Therefore $\left|e_{h}(1)-e_{h}(0)\right| \leq 1$.
Hence,Ring sum of star graph and gear graph is difference cordial.
Example 7:Ring sum of $\mathrm{K}_{1,7}$ and G_{7} is difference cordial is shown in Figure 7.

Figure 7

Theorem 8: Ring sum of star graph and path graph is difference cordial for all n.
Proof:Suppose $V\left(P_{n} \oplus K_{1, n}\right)=X \cup Y$, where $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is the vertex set of P_{n} and $Y=\left\{y=x_{1}, y_{1}, y_{2}, \ldots, y_{n}\right\}$ is the vertex set of $K_{1, n}$. Here $y_{1}, y_{2}, \ldots, y_{n}$ are the pendant vertices and yis the apex vertex. $\operatorname{Also}\left|\mathrm{E}\left(\mathrm{P}_{\mathrm{n}} \oplus \mathrm{K}_{1, \mathrm{n}}\right)\right|=2 \mathrm{n}-1$ and $\left|\mathrm{V}\left(\mathrm{P}_{\mathrm{n}} \oplus \mathrm{K}_{1, \mathrm{n}}\right)\right|=2 \mathrm{n}$.
We define labeling function $\mathrm{h}: \mathrm{V}(\mathrm{G})\{1,2, \ldots, 2 \mathrm{n}\}$ as follows.
$h\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{i}, \mathrm{i} \in[1, \mathrm{n}]$.
$h\left(y_{i}\right)=n+i, i \in[1, n]$.
Then we have $e_{h}(1)=n-1$ and $e_{h}(0)=n$.
Therefore $\left|e_{h}(1)-e_{h}(0)\right| \leq 1$.
Hence,Ring sum of star graph and path graph is difference cordial.
Example 8:Ring sum ofK $\mathrm{K}_{1,7}$ andP $_{7}$ is difference cordial is shown in Figure 8.

Figure 8

References

1. Cahit, Cordial graphs: A weaker version of graceful and Harmonic graphs, Ars Combinatoria, 1987;23: 201-207.
2. J.A.Gallian, A dynamic survey of graph labeling, The Electronics Journal ofCombinatorics, 16(2013) DS 61-308.
3. J.Gross and J.Yellen, Graph Theory and its Applications, CRC Press, 1999.
4. R. Ponraj, S. Sathish Narayanan and R. Kala, Difference Cordial Labeling of Graphs, Global Journal of Mathematical Sciences: Theory and Practical, Volume 5, No. 3 (2013), pp. 185-196.
5.G. V. Ghodasara and A. H. Rokad, Cordial Labeling in Context of Vertex Switching ofSpecial Graphs, International Journal of Mathematical Sciences, ISSN: 2051-5995, Vol.33, Issue.2.
5. A. H. Rokad and G. V. Ghodasara, 3-Equitable Labeling in Context of Ring Sum of Graphs, Research \& Reviews: Discrete Mathematical Structures, Volume 2, Issue 3.

[^0]: *Corresponding author
 Nidhi M. Parsania
 Department of Applied Science \& Humanities, VVP Engineering College, Rajkot, Gujarat, INDIA
 nidhi781992@gmail.com

