Intenatianal J amal of Sientific Reserchand Reiens

Geometric Mean 3 -Equitable Labeling of Some Graphs

Kaneria V J ${ }^{\mathbf{1}}$, Meghpara Meera* and Khoda Maulik ${ }^{3}$
${ }^{1}$ Department of Mathematics, Saurashtra University, RAJKOT-360005.
E-mail: Kaneria vinodrayj@yahoo.co.in
${ }^{2}$ R. K. University, RAJKOT-360020.
E-mail: meera.meghpara@gmail.com
${ }^{3}$ V. V. P. Engineering College, RAJKOT-360005. E-mail: mjkmaths@ gmail.com

Abstract

In this paper we proved that $K_{m n}(m, n \geq 4)$ is not a geometric mean 3 -equitable graph, while caterpillar $S\left(x_{1}, x_{2}, \ldots, x_{t}\right), C_{n} \odot t K_{1}(t \geq 2)$ both are geometric mean 3 -equitable graphs. We also proved that $C_{n} \odot K_{1}$ is not geometric mean 3 -equitable graph, when $n \equiv 0(\bmod 3)$,while it is geometric mean 3 -equitable graph, when $n \equiv 1,2(\bmod 3)$.

KEY WORDS : Caterpillar, corona graph, complete bipartite graph, cycle, star graph, geometric mean 3 -equitable graphs.

AMS subject classification number:05C78.

*Corresponding author

Meera Meghpara
R. K. University, RAJKOT
(Gujrat)-360020.
E-mail: meera.meghpara@gmail.com

I. INTRODUCTION:

The concept of cordial and 3 -equitable labeling was introduced by Cahit ${ }^{1,2}$. The labeled graphs have several application in the areas of radar, circuit design, cryptography etc. Mean cordial labeling was introduced by Ponraj, Sivakumar and Sundaram ${ }^{6}$.

Geometric mean cordial labeling of graph was introduced by ChitraLakshmi and Nagarajan ${ }^{3}$ and they have proved that $P_{n}, C_{n}(n \equiv 1,2(\bmod 3)), K_{1, n}, K_{n}(n \leq 2), K_{2, n}(n \leq$ 2) are geometric mean cordial graphs and $K_{n}(n>2), K_{2, n}(n>2), K_{n, n}(n \geq 3), W_{n}$ are not geometric mean cordial graphs.

By survey of literature geometric mean cordial labeling defined by ChitraLakshmi and Nagarajan [3] its name should be geometric mean 3 -equitable labeling as they are using $e_{f}(0), e_{f}(1)$ and $e_{f}(2)$. For a (p, q) graph G, a function $f: V(G) \rightarrow\{0,1,2\}$ with its induced edge labeling function $f^{*}: E(G) \longrightarrow\{0,1,2\}$ defined by $f^{*}(u v)=\lceil\sqrt{f(u) f(v)}\rceil$ is called geometric mean 3 - equitable labeling if $\left|v_{f}(i)-v_{f}(j)\right|,\left|e_{f}(i)-e_{f}(j)\right| \in\{0,1\}$, where $v_{f}(x)$ and $e_{f}(x)$ denotes the number of vertices and edges with x label respectively, where $x, i, j \in\{0,1,2\}$.

II. MAIN RESULTS :

Theorem-2.1: Caterpillar $S\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ is a geometric mean 3 -equitable graph.

Proof :Let $\quad V\left(S\left(x_{1}, x_{2}, \ldots, x_{t}\right)\right)=\left\{v_{i} / 1 \leq i \leq t\right\} \cup\left\{v_{i j} / 1 \leq j \leq x_{i}, 1 \leq i \leq t\right\} \quad$ and $E\left(S\left(x_{1}, x_{2}, \ldots, x_{t}\right)\right)=\left\{v_{i} v_{i+1} / 1 \leq i \leq t-1\right\} \cup\left\{v_{i} v_{i j} / 1 \leq j \leq x_{i}, 1 \leq i \leq t\right\}$. It is obvious that $p=x_{1}+x_{2}+\cdots+x_{t}+t \quad$ and $q=p-1 \quad$ (as caterpillar is a tree). We redefine $V\left(S\left(x_{1}, x_{2}, \ldots, x_{t}\right)\right)=\left\{u_{k} / 1 \leq k \leq p\right\} \quad$ by taking $\quad u_{i}=v_{i}(1 \leq i \leq t\}, u_{t+j_{1}}=v_{1 j_{1}}\left(1 \leq j_{1} \leq\right.$ $\left.x_{1}\right), u_{t+x_{1+j_{2}}}=v_{2 j_{2}}\left(1 \leq j_{2} \leq x_{2}\right), \ldots, u_{t+x_{1+x_{2}+\cdots+x_{t-1}+j_{t}}}=v_{t j_{t}}\left(1 \leq j_{t} \leq x_{t}\right)$.

Let $p_{1}=\left\lceil\frac{p}{3}\right\rceil, p_{2}=\left\lceil\frac{p-p_{1}}{2}\right\rceil$ and $p_{3}=p-\left(p_{1}+p_{2}\right)$.
Define $f: V\left(S\left(x_{1}, x_{2}, \ldots, x_{t}\right)\right) \rightarrow\{0,1,2\}$ as follows.

$$
\begin{aligned}
f\left(u_{i}\right) & =1, \quad \text { when } 1 \leq i \leq p_{1} \\
& =2, \quad \text { when } p_{1}+1 \leq i \leq p_{1}+p_{2} \\
& =0, \quad \text { when } p_{1}+p_{2}+1 \leq i \leq p .
\end{aligned}
$$

Above defined labeling pattern give rise $v_{f}(0)=p_{3}, v_{f}(2)=p_{2}, v_{f}(1)=p_{1}$ and $e_{f}(1)=$ $p_{1}-1, e_{f}(2)=p_{2}, e_{f}(0)=p_{3}$. In any case it is obvious that $\left|v_{f}(i)-v_{f}(j)\right|,\left|e_{f}(i)-e_{f}(j)\right| \in$ $\{0,1\}, \forall i, j \in\{0,1,2\}$. Thus, $S\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ is a geometric mean 3 -equitable graph.

Theorem-2.2: $C_{n} \odot t K_{1}(t \geq 2)$ is a geometric mean 3 -equitable graph.

Proof :Let $G=C_{n} \odot t K_{1}, V(G)=\left\{v_{i} / 1 \leq i \leq n\right\} \cup\left\{v_{i j} / 1 \leq j \leq t, 1 \leq i \leq n\right\}$ and $E(G)=$ $\left\{v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{v_{1} v_{n}\right\} \cup\left\{v_{i} v_{i j} / 1 \leq j \leq t, 1 \leq i \leq n\right\}$. Thus, $p=|V(G)|=(t+1) n=$ q.

We redefine $V(G)=\left\{u_{k} / 1 \leq k \leq p\right\}$ by taking $u_{i}=v_{i}(1 \leq i \leq n\}$, $u_{n+j_{1}}=v_{1 j_{1}}(1 \leq$ $\left.j_{1} \leq t\right), u_{t+n_{+j_{2}}}=v_{2 j_{2}}\left(1 \leq j_{2} \leq t\right), \ldots, u_{n+(n-1) t+j_{n}}=v_{n j_{n}}\left(1 \leq j_{n} \leq t\right)$.

Define $f: V(G) \longrightarrow\{0,1,2\}$ as follows.

$$
\begin{aligned}
f\left(u_{i}\right) & =1, \quad \text { when } 1 \leq i \leq\left\lceil\frac{p}{3}\right\rceil \\
& =2, \quad \text { when }\left\lceil\frac{p}{3}\right\rceil+1 \leq i \leq\left\lceil\frac{p-p_{1}}{2}\right\rceil+p_{1} \\
& =0, \quad \text { when }\left\lceil\frac{p-p_{1}}{2}\right\rceil+p_{1}+1 \leq i \leq p, \text { where } p_{1}=\left\lceil\frac{p}{3}\right\rceil .
\end{aligned}
$$

Above defined labeling pattern give rise $v_{f}(0)=\left\lfloor\frac{p}{3}\right\rfloor=\left\lfloor\frac{p-p_{1}}{2}\right\rfloor, v_{f}(2)=\left\lceil\frac{p-p_{1}}{2}\right\rceil, v_{f}(1)=$ p_{1} and $e_{f}(1)=p_{1}, e_{f}(2)=\left\lceil\frac{p-p_{1}}{2}\right\rceil, e_{f}(0)=\left\lceil\frac{p}{3}\right\rfloor$. In any case it is observed that $\mid v_{f}(i)-$ $v_{f}(j)\left|,\left|e_{f}(i)-e_{f}(j)\right| \in\{0,1\}, \forall i, j \in\{0,1,2\}\right.$. Thus, G admits a geometric mean $3-$ equitable labeling and so, it is a geometric mean 3 -equitablegraph.

Theorem-2.3: $C_{n} \odot K_{1}$ is not geometric mean 3 -equitable graph, when $n \equiv 0(\bmod 3)$ and it is geometric mean 3 -equitable graph, when $n \equiv 1,2(\bmod 3)$.

Proof :Let $\quad H=C_{n} \odot K_{1}, V(H)=\left\{v_{i}, u_{i} / 1 \leq i \leq n\right\} \quad$ and $\quad E(H)=\left\{v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup$ $\left\{v_{1} v_{n}\right\} \cup\left\{u_{i} v_{i} / 1 \leq i \leq n\right\}$. Thus $p=q=2 n$.

Case-I $\quad n \equiv 0(\bmod 3)$. Take $n=3 t$.

If H admits any geometric mean 3 -equitable labeling f, then it is only possibly when $v_{f}(0)=v_{f}(1)=v_{f}(2)=2 t=\frac{p}{3}=\frac{2 n}{3}$. Since, edge label 1 under f is only possible when its both the end vertices have label 1 , under f, we must have $e_{f}(1) \leq 2 t-1$ and $\max \left\{e_{f}(0), e_{f}(2)\right\} \geq 2 t+$ 1. Which gives either $\left|e_{f}(0)-e_{f}(1)\right| \geq 2$ or $\left|e_{f}(2)-e_{f}(1)\right| \geq 2$. This leads to a contradiction as f is a geometric mean 3 -equitable labeling for H. Thus, H can not admits any geometric mean 3 -equitable labeling. So, it is not a geometric mean 3 -equitable graph, when $n \equiv 0(\bmod 3)$.

Case-II $\quad n \equiv 1,2(\bmod 3)$.
Let $p_{1}=\left\lceil\frac{p}{3}\right\rceil, p_{2}=\left\lceil\frac{p-p_{1}}{2}\right\rceil$ and $p_{3}=p-\left(p_{1}+p_{2}\right)$.
Define $f: V(H) \longrightarrow\{0,1,2\}$ as follows.
$f\left(v_{i}\right)=1, \quad \forall 1 \leq i \leq p_{1}$

$$
=2, \quad \forall p_{1}+1 \leq i \leq n ;
$$

$f\left(u_{i}\right)=0, \quad \forall 1 \leq i \leq p_{2}$

$$
=2, \quad \forall p_{2}+1 \leq i \leq n .
$$

Above defined labeling pattern give rise $v_{f}(1)=p_{1}, v_{f}(0)=p_{2}, v_{f}(2)=p_{3}$ and $e_{f}(1)=$ $p_{1}-1, e_{f}(0)=p_{2}, e_{f}(2)=p_{3}+1$. Since $p_{3}=p_{1}-1,\left|p_{i}-p_{j}\right| \in\{0,1\}, \forall i \in\{0,1,2\}$, we must get $\left|v_{f}(i)-v_{f}(j)\right|,\left|e_{f}(i)-e_{f}(j)\right| \in\{0,1\}, \forall i, j \in\{0,1,2\}$. Thus, H admits geometric mean 3 -equitable labeling f and so, it is a geometric mean 3 -equitable graph, when $n \equiv 1,2(\bmod 3)$.

Theorem-2.4: $K_{m, n}$ is not a geometric mean 3 -equitable graph, when $m, n \geq 4$.
Proof :Let $V\left(K_{m, n}\right)=M \cup N$. We take $M=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $N=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ both are two partite sets of $K_{m, n}$. Let $E\left(K_{m, n}\right)=\left\{u_{i} v_{j} / 1 \leq i \leq m, 1 \leq j \leq n\right\}$. It is obvious that $p=m+n$ and $q=m n$.

Let $f: V\left(K_{m, n}\right) \longrightarrow\{0,1,2\}$ be any vertex labeling. To make geometric mean $3-$ equitable labeling f for $K_{m, n}$, we have to choose $\max \left\{v_{f}(0), v_{f}(1), v_{f}(2)\right\}-\min \left\{v_{f}(0), v_{f}(1), v_{f}(2)\right\} \in$ $\{0,1\}$. Let $\max \left\{v_{f}(0), v_{f}(1), v_{f}(2)\right\}=t$.i.e. $t=\left\lceil\frac{p}{3}\right\rceil$. Since, edge label 1 under f is only possible
when its both the end vertices have label 1 under f. We shall take the following three cases to compute $e_{f}(1)$ for $K_{m, n}$.

Case-I $\quad \frac{t}{2} \geq \min \{m, n\}=n$ (say).
It is observe that $e_{f}(1) \leq(t-n) \cdot n=t n-n^{2}$.
First we shall prove here $t n-n^{2}<\left\lfloor\frac{m n}{3}\right\rfloor$. Suppose not if possible.

$$
\begin{aligned}
& \text { i.e. } t n-n^{2} \geq\left\lfloor\frac{m n}{3}\right\rfloor \\
& \Rightarrow 3 t n-3 n^{2} \geq m n \\
& \Rightarrow(3(t-n)-m) n \geq 0 \\
& \Rightarrow(3(t-n)-m) \geq 0 \\
& \Rightarrow 3 t-3 n \geq m \\
& \Rightarrow 3 t-2 n \geq m+n=p \\
& \Rightarrow p+2-2 n \geq p \\
& \Rightarrow 2-2 n \geq 0,
\end{aligned}
$$

Which is impossible as $n \geq 4$ and so, $t n-n^{2} \geq\left\lfloor\frac{m n}{3}\right\rfloor$ can not holds. Thus, $e_{f}(1) \leq t n-$ $n^{2}<\left\lfloor\frac{m n}{3}\right\rfloor$.

Case-II $\quad \frac{t}{2}<\min \{m, n\}=n$ (say) and $\frac{t}{2}<\frac{m}{3}$.

$$
\begin{aligned}
& \Rightarrow\left(\frac{t}{2}\right)^{2}<\frac{m n}{3} \\
& \Rightarrow e_{f}(1)<\left(\frac{t}{2}\right)^{2} \leq\left\lfloor\frac{m n}{3}\right\rfloor \\
& \text { i.e. } e_{f}(1)<\left\lfloor\frac{m n}{3}\right\rfloor .
\end{aligned}
$$

Case-III $\quad \frac{t}{2}<\min \{m, n\}=n$ (say) and $\frac{t}{2} \geq \frac{m}{3}$.

$$
\Rightarrow 3 t \geq 2 m
$$

$$
\begin{aligned}
& \Rightarrow m+n+2 \geq 2 m \\
& \Rightarrow m \leq n+2
\end{aligned}
$$

Now we see that $t \leq \frac{m+n+2}{3} \leq \frac{2 n+4}{3} \leq n$, as $n \geq 4$

$$
\begin{aligned}
& \Rightarrow t \leq m, n \\
& \Rightarrow t^{2} \leq m n \\
& \Rightarrow \frac{t^{2}}{4} \leq \frac{m n}{4}<\frac{m n}{3} \\
& \Rightarrow e_{f}(1) \leq \frac{t^{2}}{4}<\left\lfloor\frac{m n}{3}\right\rfloor .
\end{aligned}
$$

Thus, in any case $e_{f}(1)<\left\lfloor\frac{m n}{3}\right\rfloor$, which gives $\max \left\{e_{f}(0), e_{f}(2)\right\} \geq\left\lfloor\frac{m n}{3}\right\rfloor+2$.
$\therefore \max \left\{e_{f}(0), e_{f}(2)\right\}-e_{f}(1) \geq 2$
$\therefore f$ can not be a geometric mean 3 - equitable labeling for $K_{m, n}$. Hence, $K_{m, n}$ is not a geometric mean 3 -equitable graph, when $m, n \geq 4$.

REFERENCES

[1] I Cahit, Cordial graphs: A weaker version of graceful and harmonious graph, Ars Combin., 23,(1987), pp. 201 - 207.
[2] I Cahit, On cordial and 3 -equitable labeling of graphs, Until. Math.,37,(1990), pp. 189 - 198.
[3] K. Chitra Lakshmi and K. Nagarajan, Geometric mean cordial labeling of graphs, Int. J. of Math. And Soft Computing, 7(1),(2017),pp. $75-87$.
[4] J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronics Journal of Combinatorics, 17\#DS6, (2016).
[5] F. Harary, Graph theory, Addition Wesley, Massachusetts, 1972.
[6] R. Ponraj, M. Sivakumar and M. Sundaram, Mean cordial labeling of graphs, Open J. Discrete math., 2, (2012), pp. 145-148.

