

Research article

Available online www.ijsrr.org ISSN: 2279–0543

International Journal of Scientific Research and Reviews

Geometric Mean 3 – **Equitable Labeling of Some Graphs**

Kaneria V J¹, Meghpara Meera^{*} and Khoda Maulik³

 ¹Department of Mathematics, Saurashtra University, RAJKOT-360005. E-mail: <u>Kaneria vinodray j@yahoo.co.in</u>
 ²R. K. University, RAJKOT-360020. E-mail: <u>meera.meghpara@gmail.com</u>
 ³V. V. P. Engineering College, RAJKOT-360005. E-mail: <u>mjkmaths@gmail.com</u>

ABSTRACT

In this paper we proved that $K_{mn}(m, n \ge 4)$ is not a geometric mean 3 –equitable graph, while caterpillar $S(x_1, x_2, ..., x_t)$, $C_n \odot tK_1(t \ge 2)$ both are geometric mean 3 –equitable graphs. We also proved that $C_n \odot K_1$ is not geometric mean 3 –equitable graph, when $n \equiv 0 \pmod{3}$, while it is geometric mean 3 –equitable graph, when $n \equiv 1, 2 \pmod{3}$.

KEY WORDS : Caterpillar, corona graph, complete bipartite graph, cycle, star graph, geometric mean 3 –equitable graphs.

AMS subject classification number:05C78.

*Corresponding author

Meera Meghpara

R. K. University, RAJKOT

(Gujrat)-360020.

E-mail: meera.meghpara@gmail.com

I. INTRODUCTION:

The concept of cordial and 3 –equitable labeling was introduced by Cahit^{1, 2}. The labeled graphs have several application in the areas of radar, circuit design, cryptography etc. Mean cordial labeling was introduced by Ponraj, Sivakumar and Sundaram⁶.

Geometric mean cordial labeling of graph was introduced by ChitraLakshmi and Nagarajan ³ and they have proved that P_n , C_n $(n \equiv 1,2 \pmod{3})$, $K_{1,n}$, K_n $(n \leq 2)$, $K_{2,n}$ $(n \leq 2)$ are geometric mean cordial graphs and K_n (n > 2), $K_{2,n}$ (n > 2), $K_{n,n}$ $(n \geq 3)$, W_n are not geometric mean cordial graphs.

By survey of literature geometric mean cordial labeling defined by ChitraLakshmi and Nagarajan [3] its name should be geometric mean 3 – equitable labeling as they are using $e_f(0), e_f(1)$ and $e_f(2)$. For a (p, q)graph G, a function $f: V(G) \rightarrow \{0, 1, 2\}$ with its induced edge labeling function $f^*: E(G) \rightarrow \{0, 1, 2\}$ defined by $f^*(uv) = \left[\sqrt{f(u)f(v)}\right]$ is called geometric mean 3 – equitable labeling if $|v_f(i) - v_f(j)|, |e_f(i) - e_f(j)| \in \{0, 1\}$, where $v_f(x)$ and $e_f(x)$ denotes the number of vertices and edges with x label respectively, where $x, i, j \in \{0, 1, 2\}$.

II. MAIN RESULTS :

Theorem-2. 1: Caterpillar $S(x_1, x_2, ..., x_t)$ is a geometric mean 3 –equitable graph.

Proof :Let $V(S(x_1, x_2, ..., x_t)) = \{v_i/1 \le i \le t\} \cup \{v_{ij}/1 \le j \le x_i, 1 \le i \le t\}$ and $E(S(x_1, x_2, ..., x_t)) = \{v_i v_{i+1}/1 \le i \le t - 1\} \cup \{v_i v_{ij}/1 \le j \le x_i, 1 \le i \le t\}$. It is obvious that $p = x_1 + x_2 + \dots + x_t + t$ and q = p - 1 (as caterpillar is a tree). We redefine $V(S(x_1, x_2, ..., x_t)) = \{u_k/1 \le k \le p\}$ by taking $u_i = v_i(1 \le i \le t\}, u_{t+j_1} = v_{1j_1}(1 \le j_1 \le x_1), u_{t+x_{1+j_2}} = v_{2j_2}(1 \le j_2 \le x_2), \dots, u_{t+x_{1+x_2}+\dots+x_{t-1}+j_t} = v_{tj_t}(1 \le j_t \le x_t).$

Let
$$p_1 = \left[\frac{p}{3}\right]$$
, $p_2 = \left[\frac{p-p_1}{2}\right]$ and $p_3 = p - (p_1 + p_2)$.

Define $f: V(S(x_1, x_2, \dots, x_t)) \rightarrow \{0, 1, 2\}$ as follows.

 $f(u_i) = 1$, when $1 \le i \le p_1$ = 2, when $p_1 + 1 \le i \le p_1 + p_2$ = 0, when $p_1 + p_2 + 1 \le i \le p$. Above defined labeling pattern give rise $v_f(0) = p_{3'}$, $v_f(2) = p_{2'}$, $v_f(1) = p_1$ and $e_f(1) = p_1 - 1$, $e_f(2) = p_{2'}$, $e_f(0) = p_3$. In any case it is obvious that $|v_f(i) - v_f(j)|$, $|e_f(i) - e_f(j)| \in \{0,1\}, \forall i, j \in \{0,1,2\}$. Thus, $S(x_1, x_2, ..., x_t)$ is a geometric mean 3 –equitable graph.

Theorem-2. 2: $C_n \odot tK_1$ ($t \ge 2$) is a geometric mean 3 –equitable graph.

Proof :Let $G = C_n \odot tK_1$, $V(G) = \{v_i/1 \le i \le n\} \cup \{v_{ij}/1 \le j \le t, 1 \le i \le n\}$ and $E(G) = \{v_i v_{i+1}/1 \le i \le n-1\} \cup \{v_1 v_n\} \cup \{v_i v_{ij}/1 \le j \le t, 1 \le i \le n\}$. Thus, p = |V(G)| = (t+1)n = q.

We redefine $V(G) = \{u_k/1 \le k \le p\}$ by taking $u_i = v_i(1 \le i \le n\}$, $u_{n+j_1} = v_{1j_1}(1 \le j_1 \le t)$, $u_{t+n_{+j_2}} = v_{2j_2}(1 \le j_2 \le t)$, ..., $u_{n+(n-1)t+j_n} = v_{nj_n}(1 \le j_n \le t)$.

Define $f: V(G) \rightarrow \{0, 1, 2\}$ as follows.

$$f(u_i) = 1, \quad \text{when} 1 \le i \le \left\lceil \frac{p}{3} \right\rceil$$
$$= 2, \quad \text{when} \left\lceil \frac{p}{3} \right\rceil + 1 \le i \le \left\lceil \frac{p-p_1}{2} \right\rceil + p_1$$
$$= 0, \quad \text{when} \left\lceil \frac{p-p_1}{2} \right\rceil + p_1 + 1 \le i \le p, \text{ where } p_1 = \left\lceil \frac{p}{3} \right\rceil.$$

Above defined labeling pattern give rise $v_f(0) = \left\lfloor \frac{p}{3} \right\rfloor = \left\lfloor \frac{p-p_1}{2} \right\rfloor$, $v_f(2) = \left\lceil \frac{p-p_1}{2} \right\rceil$, $v_f(1) = p_1$ and $e_f(1) = p_1$, $e_f(2) = \left\lceil \frac{p-p_1}{2} \right\rceil$, $e_f(0) = \left\lfloor \frac{p}{3} \right\rfloor$. In any case it is observed that $|v_f(i) - v_f(j)|$, $|e_f(i) - e_f(j)| \in \{0,1\}$, $\forall i, j \in \{0,1,2\}$. Thus, *G* admits a geometric mean 3 – equitable labeling and so, it is a geometric mean 3 – equitablegraph.

Theorem-2. **3**: $C_n \odot K_1$ is not geometric mean 3 –equitable graph, when $n \equiv 0 \pmod{3}$ and it is geometric mean 3 –equitable graph, when $n \equiv 1, 2 \pmod{3}$.

Proof:Let $H = C_n \odot K_1$, $V(H) = \{v_i, u_i/1 \le i \le n\}$ and $E(H) = \{v_i v_{i+1}/1 \le i \le n-1\} \cup \{v_1 v_n\} \cup \{u_i v_i/1 \le i \le n\}$. Thus p = q = 2n.

Case–I $n \equiv 0 \pmod{3}$. Take n = 3t.

If *H* admits any geometric mean 3 – equitable labeling *f*, then it is only possibly when $v_f(0) = v_f(1) = v_f(2) = 2t = \frac{p}{3} = \frac{2n}{3}$. Since, edge label 1 under *f* is only possible when its both the end vertices have label 1, under *f*, we must have $e_f(1) \le 2t - 1$ and $\max\{e_f(0), e_f(2)\} \ge 2t + 1$. Which gives either $|e_f(0) - e_f(1)| \ge 2$ or $|e_f(2) - e_f(1)| \ge 2$. This leads to a contradiction as *f* is a geometric mean 3 – equitable labeling for *H*. Thus, *H* can not admits any geometric mean 3 – equitable labeling. So, it is not a geometric mean 3 – equitable graph, when $n \equiv 0 \pmod{3}$.

Case-II $n \equiv 1, 2 \pmod{3}$.

Let
$$p_1 = \left[\frac{p}{3}\right]$$
, $p_2 = \left[\frac{p-p_1}{2}\right]$ and $p_3 = p - (p_1 + p_2)$.

Define $f: V(H) \rightarrow \{0, 1, 2\}$ as follows.

 $f(v_i) = 1, \quad \forall \ 1 \leq i \leq p_1$

$$= 2, \qquad \forall p_1 + 1 \le i \le n;$$

 $f(u_i) = 0, \quad \forall \ 1 \le i \le p_2$

$$= 2, \qquad \forall p_2 + 1 \le i \le n.$$

Above defined labeling pattern give rise $v_f(1) = p_1$, $v_f(0) = p_2$, $v_f(2) = p_3$ and $e_f(1) = p_1 - 1$, $e_f(0) = p_2$, $e_f(2) = p_3 + 1$. Since $p_3 = p_1 - 1$, $|p_i - p_j| \in \{0,1\}$, $\forall i \in \{0,1,2\}$, we must get $|v_f(i) - v_f(j)|$, $|e_f(i) - e_f(j)| \in \{0,1\}$, $\forall i, j \in \{0,1,2\}$. Thus, H admits geometric mean 3 –equitable labeling f and so, it is a geometric mean 3 –equitable graph, when $n \equiv 1, 2 \pmod{3}$.

Theorem-2. 4: $K_{m,n}$ is not a geometric mean 3 –equitable graph, when $m, n \ge 4$.

Proof:Let $V(K_{m,n}) = M \cup N$. We take $M = \{u_1, u_2, \dots, u_m\}$ and $N = \{v_1, v_2, \dots, v_n\}$ both are two partite sets of $K_{m,n}$.Let $E(K_{m,n}) = \{u_i v_j / 1 \le i \le m, 1 \le j \le n\}$. It is obvious that p = m + n and q = mn.

Let $f: V(K_{m,n}) \to \{0,1,2\}$ be any vertex labeling. To make geometric mean 3 – equitable labeling f for $K_{m,n}$, we have to choose $\max\{v_f(0), v_f(1), v_f(2)\} - \min\{v_f(0), v_f(1), v_f(2)\} \in \{0,1\}$. Let $\max\{v_f(0), v_f(1), v_f(2)\} = t$.i.e. $t = \left[\frac{p}{3}\right]$. Since, edge label 1 under f is only possible when its both the end vertices have label 1 under f. We shall take the following three cases to compute $e_f(1)$ for $K_{m,n}$.

Case–I $\frac{t}{2} \ge \min\{m, n\} = n \text{ (say).}$

It is observe that $e_f(1) \leq (t-n) \cdot n = tn - n^2$.

First we shall prove here $tn - n^2 < \left\lfloor \frac{mn}{3} \right\rfloor$. Suppose not if possible.

i.e.
$$tn - n^2 \ge \left\lfloor \frac{mn}{3} \right\rfloor$$

 $\Rightarrow 3tn - 3n^2 \ge mn$
 $\Rightarrow (3(t - n) - m)n \ge 0$
 $\Rightarrow (3(t - n) - m) \ge 0$
 $\Rightarrow 3t - 3n \ge m$
 $\Rightarrow 3t - 2n \ge m + n = p$
 $\Rightarrow p + 2 - 2n \ge p$
 $\Rightarrow 2 - 2n \ge 0$,

Which is impossible as $n \ge 4$ and so, $tn - n^2 \ge \left\lfloor \frac{mn}{3} \right\rfloor$ can not holds. Thus, $e_f(1) \le tn - n^2 < \left\lfloor \frac{mn}{3} \right\rfloor$.

Case-II
$$\frac{t}{2} < \min\{m, n\} = n \text{ (say) and } \frac{t}{2} < \frac{m}{3}.$$

$$\Rightarrow \left(\frac{t}{2}\right)^2 < \frac{mn}{3}$$

$$\Rightarrow e_f(1) < \left(\frac{t}{2}\right)^2 \le \left\lfloor\frac{mn}{3}\right\rfloor$$

$$i.e. e_f(1) < \left\lfloor\frac{mn}{3}\right\rfloor.$$
Case-III $\frac{t}{2} < \min\{m, n\} = n \text{ (say) and } \frac{t}{2} \ge \frac{m}{3}.$

$$\Rightarrow 3t \ge 2m$$

$$\Rightarrow m + n + 2 \ge 2m$$

$$\Rightarrow m \leq n + 2.$$

Now we see that $t \le \frac{m+n+2}{3} \le \frac{2n+4}{3} \le n$, as $n \ge 4$

$$\Rightarrow t \le m, n$$
$$\Rightarrow t^{2} \le mn$$
$$\Rightarrow \frac{t^{2}}{4} \le \frac{mn}{4} < \frac{mn}{3}$$
$$\Rightarrow e_{f}(1) \le \frac{t^{2}}{4} < \left\lfloor \frac{mn}{3} \right\rfloor$$

Thus, in any case $e_f(1) < \lfloor \frac{mn}{3} \rfloor$, which gives $\max\{e_f(0), e_f(2)\} \ge \lfloor \frac{mn}{3} \rfloor + 2$.

 $\therefore \max\{e_f(0), e_f(2)\} - e_f(1) \ge 2$

 $\therefore f$ can not be a geometric mean 3 – equitable labeling for $K_{m,n}$. Hence, $K_{m,n}$ is not a geometric mean 3 – equitable graph, when $m, n \ge 4$.

REFERENCES

[1] I Cahit, Cordial graphs: A weaker version of graceful and harmonious graph, Ars Combin., 23, (1987), pp. 201 – 207.

[2] I Cahit, On cordial and 3 –equitable labeling of graphs, Until. Math., 37, (1990), pp. 189 – 198.

[3] K. Chitra Lakshmi and K. Nagarajan, Geometric mean cordial labeling of graphs, *Int. J. of Math. And Soft Computing*, 7(1), (2017), pp. 75 – 87.

[4] J. A. Gallian, A Dynamic Survey of Graph Labeling, *The Electronics Journal of Combinatorics*, 17#DS6, (2016).

[5] F. Harary, Graph theory, Addition Wesley, Massachusetts, 1972.

[6] R. Ponraj, M. Sivakumar and M. Sundaram, Mean cordial labeling of graphs, *Open J. Discrete math.*, 2, (2012), pp. 145 – 148.