I ntemational J amal of Sientific Reserch and Reiens

Path Union and Cycle of Graphs with Mean Labeling

Makadia H.M ${ }^{*}$

Lukhdhirji Engineering College, MORBI-363642.
E-mail: makadia.hardik21@gmail.com

Abstract

In this paper we investigate mean labeling for path union of $K_{2, m}, P_{n}, P_{n} \times P_{m}, C_{n}$. Also we prove that the mean labeling for cycle of $P_{n}, C_{n}, P_{n} \times P_{m}$. Path unions of any mean graph are mean graph for that were call Step grid graphics mean graph.

KEY WORDS: Cycle, Complete bipartite graph, Grid graph, Step grid graph, Path union of graphs, Cycle of graphs and mean labeling.

*Corresponding author

H. M. Makadia

Lukhdhirji Engineering College,
Morbi, Gujrat -363642.
E-mail: makadia.hardik21@gmail.com

1: INTRODUCTION

We begin with a simple, undirected and finite graph $G=(V, E)$ with $|V|=p$ vertices and $|E|=q$ edges.Forallterminology, notationsandbasicdefinitionswefollowsHarary ${ }^{1}$. First of all we give brief summary of definitions which are used in this paper.

Definition-1.1: If the vertices of the graph are assigned values subject to certain conditions then it is known as graph labeling.

Definition-1.2:A function f is called mean labeling for a graph $G=(V, E)$ if $f: V \rightarrow\{0,1$, $\ldots, q\}$ is injective and the induce function $f^{*}: E \longrightarrow\{1,2, \ldots, q\}$ defined as $f^{*}(e)=\left\lceil\frac{f(u)+f(v)}{2}\right\rceil$ is objective for every edge $e=(u, v) \in E$. Agraph G is called mean graph if it admits a mean labeling.

Definition-1.3:For a cycle C_{n}, each vertices of C_{n} is replace by connected graphs $G_{1}, G_{2}, \ldots, G_{n}$ is known as cycle of graphs and we shall denote it by $C\left(G_{1}, G_{2}, \ldots, G_{n}\right)$. If we replace each vertices by a graph G i.e. $G_{1}=G, G_{2}=G, \ldots, G_{n}=G$, such cycle of a graph G, we shall denote it by $C(n \cdot G)$. Above definition 1.3 was introduced by Kaneria et. al. ${ }^{4}$.

Definition-1.4:Let G beagraphand $G_{1}, G_{2}, \ldots, G_{n}, n \geq 2$ bencopiesofgraph G. Then the graph obtained by adding an edge from G_{i} to G_{i+1} (for $i=1,2$. . . , $n-1$)is calledpathunionof G,weshalldenoteitby $P\left(G_{1}, G_{2}, \ldots, G_{n}\right)$.Ifwereplaceeachgraphs $G_{1}, G_{2}, \ldots, G_{n}$ by a graph G i.e. $G_{1}=G=G_{2}=\ldots=G_{n}$, such path union of n copies of G, we shall denote it by $P(n \cdot G)$.

For detail survey of various graph labelings and bibliographic references we refer to Gallian [2]. Labelled graph have many diversified applications. In ${ }^{3}$ Somasunderam and Ponraj have introduced the notion of mean labeling of graphs in 2003. They proved that $P_{n}, C_{n}, P_{n} \times P_{m}, K_{2, m}$ are mean graphs and $\mathrm{K}_{\mathrm{n}}, \mathrm{K}_{1, \mathrm{n}}$ are mean graphs iff $\mathrm{n} \leq 3$. They also prove that Wn is not a mean graph for $\mathrm{n}>$ 3.

In ${ }^{5}$ Kaneria et.al. prove that the step grid graph Stn where $n \geq 3$, is a mean graph with size n.

Definition1.5 Take $P_{n}, P_{n}, P_{n-1}, \ldots, P_{2}$ pathson $n, n, n-1, n-2, \ldots, 3,2$ verticesand arrange themvertically. A graph obtained by joining horizontal vertices of given successive paths is known as a step grid graph of size n, where $n \geq 3$. It is denotedby $S t_{n}$.
Obviously $\mid V\left(S t_{n}\right)=\left(n^{2}+3 n-2\right)$ and $\left|E\left(S t_{n}\right)\right|=n^{2}+n-2$.

A Step grid graph St_{8} with its mean labeling shown in figure-1.

Figure-1 Mean labeling of St $_{8}$.

They also proved that path union of step grid graph, cycle of step grid graph $C\left(r \cdot S t_{n}\right)$ where $r \equiv 0$ $(\bmod 2)$ are mean graphs.
A mean graph G will always have vertices with labels $q, q-1$ and 0 , where $q \geq 2$.
Also two vertices with labels q and $q-1$ are adjacent in the mean graph G.
Inthispaperwehaveprovedthatpathunionofanymeangraphsisalsoameangraph and cycle of C_{n}, P_{n} and $P_{n} \times P_{m}$ are mean graphs aswell.

2: MAIN RESULTS

Theorem-2.1: \quad Path union of t copies of a mean graph G is also a meangraph.
Proof :Let G be a mean graph with injective mean labeling function $f: V(G) \rightarrow \rightarrow$
$\{0,1, \ldots, q\}$ and bijective induced function $f^{*}: E(G) \rightarrow\{1,2, \ldots, q\}$.
Let $V(G)=\left\{v_{i} / i=1,2, \ldots, p\right\}$. Since $\exists \mathrm{v}_{\mathrm{i}}, \mathrm{v}_{j} \in V(G)$ such that $f\left(v_{i}\right)=q$ and $f\left(v_{j}\right)=0$, for some $i, j \in\{1,2, \ldots, p\}$, without loss of generality we may assume that $f\left(v_{1}\right)=q$ and $f\left(v_{p}\right)=0$.

Let H be the path union of t copies of the mean graph G. Let $u_{i, j}(1 \leq j \leq p)$ be vertices of $i^{\text {th }} \operatorname{copy~}^{(i)} \quad$ of \quad pathunion $H, \quad \forall i=1,2, \ldots, t$. .Nowjoin $u_{i, 1}$ and $u_{i+1, p}$ byan edgewheniisodd,join $u_{i, p}$ and $u_{i+1,1}$ byanedgewheniiseven, $\forall i=1,2, \ldots, t-1$ to form the graph H.

Wedefine the labeling functiong: $V(H) \rightarrow\{0,1, \ldots, Q\}$, where $Q=t \cdot q+t-1$ as follows.

$$
\begin{array}{ll}
g\left(u_{1, j}\right)=f\left(v_{j}\right)+(Q-q), & \forall j=1,2, \ldots, p ; \\
g\left(u_{i, j}\right)=g\left(u_{i-1, j}\right)-(q+1), & \forall j=1,2, \ldots, p, \forall i=2,3, \ldots, t .
\end{array}
$$

Above labeling pattern give rise a mean labeling to the given H and so H is a mean graph.

Corollary-2.2: Path union of t copies of $K_{2, m}$ is a meangraph.
Proof : Let H be a path union of t copies of $K_{2, m}$. We see that the number of vertices in H is $|V(H)|=P=t(m+2)$ and the number of edges in H is $E(H)=Q=2 t m+t-1$.

Let $u_{i, 1}, u_{i, 2}, v_{i, j}(1 \leq j \leq m)$ beverticesof $i^{\text {th }} \operatorname{copy} K_{2, m}{ }^{(i)} \operatorname{of} H, \forall i=1,2, \ldots, t$.Nowjoin $u_{i, 1}$ and $u_{i+1,2}$ by an edge when i is odd, join $u_{i, 2}$ and $u_{i+1,1}$ by an edge when i is even, $\forall \quad i=1,2, \ldots, t-1$ toformpathunionoftcopiesof $K_{2, m}$.

We know that the labeling function $f: V\left(K_{2, m}{ }^{(1)}\right)-\rightarrow\{0,1, \ldots, q=2 m\}$ defined by

$$
\begin{array}{ll}
f\left(u_{1,1}\right)=q_{2} f\left(u_{1,2}\right)=0 & \text { and } \\
f\left(u_{1, j}\right)=q-(2 j-1), & \forall j=1,2, \ldots, m
\end{array}
$$

is a mean labeling to the graph $K_{2, m}$. Now according to Theorem-2.1, we shall define $g: V(H) \longrightarrow\{0,1, \ldots, Q\}$ as follows.

$$
\begin{array}{ll}
g\left(u_{1, j}\right)=f\left(u_{1, j}\right)+(Q-q), & \forall j=1,2 ; \\
g\left(v_{1, j}\right)=f\left(v_{i, j}\right)+(Q-q), & \forall j=1,2, \ldots, m ; \\
g\left(u_{i, j}\right)=g\left(u_{i-1, j}\right)-(q+1), & \forall j=1,2, \forall i=2,3, \ldots, t ; \\
g\left(v_{i, j}\right)=g\left(v_{i-1, j}\right)-(q+1), & \forall j=1,2, \ldots, m, \forall i=2,3, \ldots, t .
\end{array}
$$

Above labeling pattern give rise mean labeling to the path union of t copies of $K_{2, m}$ and so it is a mean graph.

Illustration-2.3:Pathunionof4copiesof $K_{2,3}$ anditsmeanlabelingshowninfigure-2.

Figure-2 Path union of 4 copies of $K_{2,3}$ and its mean labeling.

Corollary-2.4: Path union of t copies of C_{n} is a meangraph.
Proof : Let H be path union of t copies of $C_{n}(n \in N)$. We see that number of vertices in H is $|V(H)|=$ $P=t n$ and number of edges in H is $|E(H)|=Q=t n+t-1$. Let $u_{i, j}(1 \leq j \leq n)$ beverticesof $i^{t h}$ copy $C^{(i)}$ of $H, \forall i=\quad 1,2, \ldots, t$.Nowjoin $u_{i, 1} \quad$ and $u_{i+1, n}$ by anedgewheniisodd,join $u_{i, n}$ and $u_{i+1,1}$ byanedgewhen i iseven, $\forall i=1,2, \ldots, t-1$ to form pathunionoftcopiesof C_{n}.

We know that the labeling function $f: V\left(C_{n}{ }^{(1)}\right)-\rightarrow\{0,1, \ldots, q=n\}$ defined by

$$
\begin{aligned}
f\left(u_{1, j}\right) & =q+1-j, & & \text { when } j \leq\left\lceil\frac{n+1}{2}\right\rceil \\
& =q-j, & & \text { when } j>\left\lceil\frac{n+1}{2}\right\rceil, \forall j=1,2, \ldots, n
\end{aligned}
$$

is a mean labeling to the graph C_{n}. Now according to Theorem -2.1 , we shall define $g: V(H) \rightarrow\{0,1, \ldots, Q\}$, as follows.

$$
\begin{array}{ll}
g\left(u_{1, j}\right)=f\left(u_{1, j}\right)+(Q-n), & \forall j=1,2, \ldots, n ; \\
g\left(u_{i, j}\right)=g\left(u_{i-1, j}\right)-(n+1), & \forall j=1,2, \ldots, n, \forall i=2,3, \ldots, t .
\end{array}
$$

Above labeling pattern give rise mean labeling to the graph H and so H is a mean graph.

Illustration-2.5:Pathunionof5copiesof C_{7} anditsmeanlabelingshowninfigure-3.

Figure-3 Path union of 5 copies of $C 7$ and its mean labeling.

Corollary-2.6: Path union of t copies of P_{n} is a meangraph.
Proof : Let H be a path union of t copies of $P_{n}(n \in N)$. We see that the number of verticesinHistnandthenumberofedgesinHistn-1.Let $u_{i, j}(1 \leq j \leq n)$ bevertices of $i^{\text {th }} \operatorname{copy} P^{(i)} \quad$ of H, $\forall i=1,2, \ldots, t . \operatorname{Nowjoin} u_{\mathrm{n}, 1} \quad$ and $u_{i+1, n}$ byanedgewheniisodd, join $u_{i, n}$ and $u_{i+1,1}$ byanedgewheniiseven, $\forall i=1,2, \ldots, t-1$ toformpathunionof t copies of P_{n}.
We know that the labeling function $f: V\left(P_{n}{ }^{(1)}\right)-\rightarrow\{0,1, \ldots, q=n-1\}$ definedby

$$
f\left(u_{1, j}\right)=n-j, \quad \forall j=1,2, \ldots, n
$$

is a mean labeling to the graph P_{n}. Now according to Theorem-2.1, we shall define $g: V(H) \longrightarrow\{0,1, \ldots, Q\}$, where $Q=t n-1$ as follows.

$$
\begin{array}{ll}
g\left(u_{1, j}\right)=f\left(u_{1, j}\right)+(Q-q), & \forall j=1,2, \ldots, n ; \\
g\left(u_{i, j}\right)=g\left(u_{i-1, j}\right)-(q+1), & \forall j=1,2, \ldots, n, \forall i=2,3, \ldots, t .
\end{array}
$$

Above labeling pattern give rise mean labeling to the graph Hobtained by pathunion of t copies of P_{n} and so it is a mean graph.

Illustration-2.7:Pathunionof7copiesof P_{5} anditsmeanlabelingshowninfigure-4.

Figure-4 Pathunion of 7 copies of $\mathbf{P 5}$ and its mean labeling.

Corollary-2.8: Path union of t copies of $P_{n} \times P_{m}$ is a meangraph.
Proof : Let H be a path union of t copies of $P_{n} \times P_{m}(m, n \in N-\{1\})$. We see that the number of vertices in H is $|V(H)|=P=t m n$ and the number of edges in H is $|E(H)|=Q=t(q+1)-1$, where q $=2 m n-(m+n)$. Let $u_{i, j, k}(1 \leq j \leq n, 1 \leq k \leq m)$ be verticesofit ${ }^{\text {th }} \operatorname{copy}\left(P_{n} \times P_{m}\right)^{(i)}$ of $H, \forall i=$ $1,2, \ldots, t$. Nowjoin $u_{i, n, m}$ with $u_{i+1,1,1}$ byan edge $\forall i=1,2, \ldots, t-1$ toformthegraph H.
We know that the labeling function $f: V\left(\left(P_{n} \times P_{m}\right)^{(1)}\right) \rightarrow\{0,1, \ldots, q\}$, where $q=2 m n-(m+n)$ defined by

$$
f\left(u_{1, j, k}\right)=q-(2 m-1)(j-1)-(k-1), \quad \forall j=1,2, \ldots, n, \forall k=1,2, \ldots, m
$$

is a mean labeling to the graph $\left(P_{n} \times P_{m}\right)^{(1)}$.Now define $g: V(H) \rightarrow\{0,1, \ldots, Q\}$ as follows.

$$
g\left(u_{i, j, k}\right)=Q-(q+1)(i-1)-(2 m-1)(j-1)-(k-1),
$$

$\forall i=1,2, \ldots, t, \forall j=1,2, \ldots, n, \forall k=1,2, \ldots, m$.
Above labeling pattern give rise mean labeling to the graph H obtained by pathunion of t copies of grid graph $P_{n} \times P_{m}$ and so H is a mean graph.

Illustration-2.9 : Path union of 5 copies of $P_{3} \times P_{3}$ and its mean labeling shown in figure -5.

Figure -5 Path union of 3 copies of $\mathrm{P} 3 \times \mathrm{P} 4$ and its mean labeling.

Theorem-2.10: $\quad C\left(t \cdot P_{n}\right)$ is a mean graph, where $t \equiv 0(\bmod 2)$.
Proof :Let $G=C\left(t \cdot P_{n}\right)$, where $n \in N$. It is obvious that $P=|V(G)|=t n=Q=$ $|E(G)|$. Let $u_{i, j}(1 \leq j \leq n, 1 \leq i \leq t)$ be vertices of graph G. We shall join $u_{i, 1}$ with $\mathrm{u}_{\mathrm{i}+1, \mathrm{n}}$, When $i+\frac{t}{2}$ is odd and $\mathrm{u}_{\mathrm{i}, \mathrm{n}}$ with $\mathrm{u}_{\mathrm{i}+1,1}$, When $i+\frac{t}{2}$ is even to form the cycle graph $G=C\left(t \cdot P_{n}\right)$.

Now define the labeling function : $V(G) \rightarrow\{0,1, \ldots, Q\}$ as follows.
$g\left(u_{i, j}\right)=Q-n(i-1)-(j-1), \forall j=1,2, \ldots, n, \forall i=1,2, \ldots, \frac{t}{2} ;$
$g\left(u_{\frac{t}{2}+1,1}\right)=\frac{Q}{2} ;$
$g\left(u_{\frac{t}{2}+1,1}\right)=\frac{Q}{2}-j, \quad \forall j=1,2, \ldots, n ;$
$g\left(u_{i, j}\right)=Q-n(i-1)-j, \forall j=1,2, \ldots, n, \forall i=\frac{t}{2}+2, \frac{t}{2}+3, \cdots \cdots, t$.
Above labeling pattern give rise mean labeling to the graph G obtained by taking cycle of path P_{n} and so G is a mean graph.

Illustration-2.11:C(6 $\left.\cdot P_{5}\right)$ and its mean labeling shown in figure-6.

Figure-6 Cycle graph C(6•P5) and its mean labeling.

Theorem-2.12: $\quad C\left(t \cdot C_{n}\right)$ is a mean graph, where $n \in N$ and $t \equiv 0(\bmod 2)$.
Proof : Let $G=C\left(t \cdot C_{n}\right)$, where $n \in N$. It is obvious that $P=|V(G)|=t n$ and $Q=$ $|E(G)|=t(n+1)$. Let $u_{i, j}(1 \leq j \leq n, 1 \leq i \leq t)$ be vertices of graph G. We shall join $u_{i, 1}$ with $u_{i+1, n}$, when $i+\frac{i}{2}$ is odd and $u_{i, n}$ with $u_{i+1,1}$, when $i+\frac{i}{2}$ is even to form the cycle graph $G=C\left(t \cdot C_{n}\right)$.

Now define the labeling function : $V(G) \rightarrow\{0,1, \ldots, Q\}$ as follows.
$g\left(u_{i, j}\right)=Q-(n+1)(i-1)-(j-1)$, when $j \leq\left\lceil\frac{n+1}{2}\right\rceil$

$$
=Q-(n+1)(i-1)-j, \quad \text { when } j>\left\lceil\frac{n+1}{2}\right\rceil \text {, }
$$

$$
\forall j=1,2, \ldots, n, \forall i=1,2, \ldots, \frac{t}{2}
$$

$g\left(u_{\frac{t}{2}+1,1}\right)=\frac{Q}{2} ;$
$g\left(u_{\frac{t}{2}+1,1}\right)=\frac{Q}{2}-j, \quad \forall j=1,2, \ldots,\left\lceil\frac{n}{2}\right\rceil ;$
$=\frac{Q}{2}-(j+1), \forall j=\left\lceil\frac{n+2}{2}\right\rceil,\left\lceil\frac{n+4}{2}\right\rceil, \ldots, n ;$
$g\left(u_{i, j}\right)=Q-(n+1)(i-1)-j$, when $j \leq\left\lceil\frac{n+1}{2}\right\rceil$
$=Q-(n+1)(i-1)-(j+1), \quad$ when $j>\left\lceil\frac{n+1}{2}\right\rceil$
$\forall j=1,2, \ldots, n, \forall i=\frac{t}{2}+2, \frac{t}{2}+3, \cdots \cdots, t$.
Above labeling pattern give rise mean labeling to the cycle graph G obtained by C_{n} and so G is a mean graph.

Illustration-2.13:C(4 $\left.C_{7}\right)$ and its mean labeling shown in figure -7.

Figure-7 Cycle graph $\mathrm{C}(4 \cdot \mathrm{C} 7)$ and its mean labeling.

Theorem-2.14: $C\left(t \cdot P_{n} \times P_{m}\right)$ is a mean graph, where $m, n \in N$ and $t \equiv 0(\bmod 2)$.
Proof: Let $G=C\left(t \cdot P_{n} \times P_{m}\right)$, where $n, m \in N$.It is obvious that $P=|V(G)|=t m n$ and $Q=|E(G)|=t(2 m n-$ $(m+n)+1)$. Let $u_{i, j, k}(1 \leq j \leq n, 1 \leq k \leq m, 1 \leq i \leq t) \quad$ beverticesofgraph G. Weshalljoin $u_{i, 1,1}$ with $u_{i+1, n, m}, \forall i=1,2, \ldots, t-1$ toformthe cycle graph $G=C\left(t \cdot P_{n} \times P_{m}\right)$.

Now define the labeling function: $V(G) \rightarrow\{0,1, \ldots, Q\}$, where $Q=t(q+1)$ and $q=2 m n-(m+n)$ as follows.
$g\left(u_{i, j, k}\right)=Q-(q+1)(i-1)-(2 m-1)(j-1)-(k-1)$,
$\forall j=1,2, \ldots, n, \forall k=1,2, \ldots, m, \forall i=1,2, \ldots, \frac{t}{2}$;
$g\left(u_{\frac{t}{2}+1,1,1}\right)=\frac{Q}{2} ;$

$$
g\left(u_{\frac{t}{2}+1, j, k}\right)=Q-(q+1)(i-1)-(2 m-1)(j-1)-k,
$$

$\forall j=1,2, \ldots, n, \forall k=1,2, \ldots, m$,

$$
g\left(u_{i, j}\right)=Q-(n+1)(i-1)-j,
$$

$\forall j=1,2, \ldots, n, \forall k=1,2, \ldots, m ;$

$$
g\left(u_{i, j, k}\right)=Q-(q+1)(i-1)-(2 m-1)(j-1)-k,
$$

$\forall j=1,2, \ldots, n, \forall k=1,2, \ldots, m, \forall i=\frac{t}{2}+2, \frac{t}{2}+3, \ldots, t$.
Above labeling pattern give rise mean labeling to the graph G obtained by taking cycle of grid graph $\left(P_{n} \times P_{m}\right)$ and so G is a mean graph.

Illustration-2.15:C(6 $\left.P_{3} \times P_{3}\right)$ and its mean labeling shown in figure -8 .

Figure-8 Cycle graph $\mathrm{C}(6 \cdot \mathrm{P} 3 \times \mathrm{P} 3)$ and its mean labeling.

3: CONCLUDING REMARKS

Here we have discussed mean labeling for path union of $C_{n}, P_{n}, K_{2, m}$ and $P_{n} \times P_{m}$. Also we proved that cycle of $C_{n}, P_{n}, \quad P_{n} \times P_{m}$ are mean graphs. These results contribute somenewtopicstothefamiliesofmeangraphs. Thelabelingpatternisdemonstratedby means of illustrations.

Theorem-2.1 is a strong result of general nature, as it shows $P\left(t_{1} \cdot P\left(t_{2} \cdot K_{2, m}\right)\right)$,
$P\left(t_{1} \cdot P\left(t_{2} \cdot P_{n}\right)\right), P\left(t_{1} \cdot P\left(t_{2} C_{n}\right)\right), P\left(t_{1} \cdot P\left(t_{2^{2}}\left(P_{n} \times P_{m}\right)\right)\right), P\left(t_{1^{\prime}} C\left(t_{2} \cdot P_{n}\right)\right), P\left(t_{1^{\prime}} C\left(t_{2} \cdot C_{n}\right)\right)$
and $P\left(t_{1} \cdot C\left(t_{2} \cdot\left(P_{n} \times P_{m}\right)\right)\right)$ aremeangraphs.Weraiseopenquestiontogetmeanlabeling for the graphs $C\left(t_{1} \cdot C\left(t_{2} \cdot P_{n}\right)\right), C\left(t_{1} \cdot C\left(t_{2} \cdot C_{n}\right)\right), C\left(t_{1} \cdot C\left(t_{2} \cdot\left(P_{n} \times P_{m}\right)\right)\right)$.

REFERENCES

1. F. Harary, Graph theory Addition Wesley, Massachusetts,1972.
2. J. A. Gallian, The Electronics Journal ofCombinatorics, 19, \#DS6(2013).
3. S.SomasunderamandR.Ponraj,Meanlabelingsofgraphs,Natl.Acad,Sci.Let.,26 (2003) pp. 210 -213.
4. V.J.Kaneria,H.M.MakadiaandM.M.Jariya,Gracefullabelingforcycleofgraphs, Int. J. of Math. Res., vol-2014;6(2): 173 - 178.
5. V. J. Kaneria, Meera Meghpara and H. M. Makadia, Mean labeling for Step grid graph, Advances and Applications in Mathematical Sciences, 2015;14(4): 111-119.
