The effects of nano alumina particles replacement on water transport properties of UHPC

S. Karnal Preeth¹ and K. Mahendran²*

¹Centre for Rural Technology, The Gandhigram Rural Institute-DU, Gandhigram-Dindigul, India. Email ID- karnalpreeth@gmail.com, Mob- 96003 26006
²Centre for Rural Technology, The Gandhigram Rural Institute-DU, Gandhigram-Dindigul, India. Email ID- mahendran_gri@rediffmail.com, Mob No- 99762 83987

ABSTRACT:

In the present investigation, the water transport properties of ultra high performance concrete (UHPC) containing nano Al₂O₃ particles have been investigated. The cement was partially replaced by 0.5%, 1%, 1.5%, 2% and 3% nano Al₂O₃ particles. The water absorption, volume of permeable voids, water penetration depth under the pressure and Sorptivity of hardened concrete were tested at an age of 28th and 56th days of curing period. The results were revealed that increasing the nano Al₂O₃ particles have found to be reducing the water transport properties of ultra high performance concrete. Because of the filler effect of nano Al₂O₃ particles provide dense packing of cement matrix of UHPC was reduced the porosity.

KEYWORDS: nano Al₂O₃, ultra high performance concrete, water absorption, the volume of permeable voids, water penetration depth and Sorptivity.

*Corresponding author

K. Mahendran
Professor and Director,
Centre for Rural Technology,
The Gandhigram Rural Institute-Deemed to be University,
Gandhigram-Dindigul, Tamilnadu, India.
Email: mahendran_gri@rediffmail.com, Mob No- 99762 83987
1. INTRODUCTION

The application nanotechnology in the construction sector was a surface coating (water repellent, UV production coating etc), effective supplementary cementing materials (such as nano-SiO₂, nano-CaCO₃, nano-TiO₂, and nano-Fe₂O₃, etc.), and in sensors etc. In recent days, many researchers focusing the utilization of nano Al₂O₃ particles as an effective supplementary cementitious material to enhance the hydration, workability properties, mechanical properties and durability performance of cement paste, mortar and concrete only²⁻¹¹. Still now, only a few studies were available on the utilization of nano Al₂O₃ in ultra high performance concrete.¹²,¹³. The literature of previous works on nanomaterial and UHPC showed that, there is a lack in the studies of water transportation properties of nano Al₂O₃ particles replaced UHPC. The present investigation aims to study the effects of Al₂O₃ particles replacement on water transportation properties (such as water absorption, the volume of permeable voids, water penetration depth under the pressure and sorptivity properties) of UHPC at age of 28 and 56 days.

MATERIALS AND METHODS

The OPC-53 grade cement¹⁴, silica fume¹⁵, Quartz powder, nano Al₂O₃ (size 20-30nm and surface area of 180 m²/g), River sand, Polypropylene fibers¹⁶, Polycarboxylic ether super-plasticizer¹⁷ were used for fabrication of UHPC. The six different mixture proportions, was developed based ASTM C1856/C1856M-17 guideline¹⁸. The CON mixture was without nano Al₂O₃ particles and other five mixture proportions were containing 0.5%, 1%, 1.5%, 2% and 3% nano Al₂O₃ replaced by weight of cement. Tables 1, show the mixture proportions details of six series mix.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>CON</th>
<th>0.5 AL</th>
<th>1.0 AL</th>
<th>1.5 AL</th>
<th>2.0 AL</th>
<th>3.0 AL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>1</td>
<td>0.995</td>
<td>0.99</td>
<td>0.985</td>
<td>0.98</td>
<td>0.97</td>
</tr>
<tr>
<td>Silica Fume</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Nano Al₂O₃</td>
<td>0</td>
<td>0.005</td>
<td>0.01</td>
<td>0.015</td>
<td>0.020</td>
<td>0.030</td>
</tr>
<tr>
<td>Quartz Powder</td>
<td>0.430</td>
<td>0.430</td>
<td>0.430</td>
<td>0.430</td>
<td>0.430</td>
<td>0.430</td>
</tr>
<tr>
<td>Sand</td>
<td>2.183</td>
<td>2.183</td>
<td>2.183</td>
<td>2.183</td>
<td>2.183</td>
<td>2.183</td>
</tr>
<tr>
<td>Water</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Superplasticizer</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>PP Fibers</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>28th'd Compressive strength (MPa)</td>
<td>122.65</td>
<td>130.18</td>
<td>136.80</td>
<td>147.02</td>
<td>155.59</td>
<td>145.40</td>
</tr>
</tbody>
</table>

MIXING, CASTING AND CURING

The six series of mixes mixed with mortar mixture machine.¹⁹ Then fresh concrete placed into the 50 x 50 x 50 mm cubes, 150 x 150 x 150 mm cubes and 100 mm diameter and 200mm height cylindrical moulds. After 24 hours, the demoulded specimens were placed in a water curing for up to the age of testing.²⁰
EXPERIMENTAL TECHNIQUES

The water absorption and volume of permeable voids of UHPC specimens were measured by Equation (1) and Equation (2), respectively according to ASTM C 642 – 06 standard procedures at age of 28th day and 56th day \(^{21}\). The water penetration depth of UHPC under the pressure was measured according to the BS EN 12390-8:2009 standard procedure at age of 28th day and 56th day \(^{22}\). The Sorptivity of UHPC was measured at age 28th day according to the ASTM C1585 – 13 \(^{23}\) and the absorption \(I\) calculated as per Equation (3).

\[
\text{Water absorption, } \% = \frac{(B-A)}{A} \times 100 \quad \text{Equation (1)}
\]

\[
\text{Volume of permeable pore space (voids), } \% = \frac{(g_2 - g_1)}{g_2} \times 100 \quad \text{Equation (2)}
\]

\[
\text{Sorptivity (I)} = \frac{m_t}{a \times d} \quad \text{Equation (3)}
\]

Where

- \(A\) - mass of oven-dried sample in air (g)
- \(B\) - a mass of surface-dry sample in the air after immersion (g)
- \(g_1\) - bulk density (g/mm\(^3\))
- \(g_2\) - apparent density (g/mm\(^3\))
- \(I\) - the absorption (mm)
- \(m_t\) - the change in specimen mass at the time \(t\) (g)
- \(a\) - the exposed area of the specimen (mm\(^2\))
- \(d\) - the density of the water (g/mm\(^3\))

Results & Discussions

The water absorption

The water absorption of UHPC specimens tested according to ASTM C 642 – 06. Figure 1 shows the effect of nano Al\(_2\)O\(_3\) particle replacement on the water absorption properties of UHPC specimen at age of 28th day and 56th day. The maximum water absorption (%) was observed on the CON mix was 0.66% and 0.54% for the 28th day and 56th day respectively in comparison to all other mixes. The minimum water absorption (%) was observed on the 2.0 AL mix was 0.53% and 0.42% for the 28th day and 56th day respectively in comparison to all other mixes.
The water permeability – depth of penetration under pressure:

The depth of water penetration under pressure of UHPC mixes tested according to the BS EN 12390-8:2009. Figure 2 shows the effect of nano Al₂O₃ particle replacement on the depth of water penetration of UHPC specimens at the age of 28th day and 56th. The maximum depth of water penetration was observed in the CON mix was 1.34mm and 1.08mm for the 28th day and 56th day respectively in comparison to all other mixes. The minimum depth of water penetration was observed in the 2.0 AL mix was 0.96mm and 0.68mm for the 28th day and 56th day respectively in comparison to all other mixes.
The volume of permeable voids

The volume of permeable voids of UHPC mixes tested according to the ASTM C 642 -06. Figure 3 shows the effect of nano Al2O3 particle replacement on the porosity of UHPC specimens at the age of 28th day and 56th day of curing. The maximum volume of permeable voids was observed on the CON mix was 1.68% and 1.38% for the 28th day and 56th day respectively in comparison to all other mixes. The minimum volume of permeable voids was observed on the 2.0 AL mix was 1.35% and 1.08% for the 28th day and 56th day respectively in comparison to all other mixes.

![Figure 3 the volume of permeable voids](image)

The sorptivity:

The water sorption properties of UHPC mixes were tested according to the ASTM C1585 – 13. Figure 3 shows the effect of nano Al2O3 particle replacement on the absorption (I) of UHPC specimens at the age of 28th day. The maximum absorption (I) was observed on the CON mix was 1.89mm, comparatively from other mix proportions. The minimum absorption (I) was observed on the 2.0 AL mix was 1.60mm, comparatively from other mix proportions.
CONCLUSIONS:

The enhancement resistance against the water transport properties of the specimens was increasing with the nano particles content and age of curing. Results reveal that the inclusion of nano Al₂O₃ particles in ultra high performance concrete cement matrix was act as the pore-filling material and increases resistance against the water transport properties such as water absorption, the volume of permeable voids, water penetration depth under the pressure and sorptivity properties of ultra high performance concrete. This may due to well-optimized UHPC mixture containing nano Al₂O₃ particle was improved the better packing, reduces the micropores and making the cement matrix into the homogenous matrix of ultra high performance concrete, because of due to the smaller size and high surface area of nano Al₂O₃.

REFERENCES

