

Research article

Available online www.ijsrr.org

ISSN: 2279–0543

International Journal of Scientific Research and Reviews

H-Recurrent Finsler Connection

Brijendra Krishna Singh

Department of Mathematics Amity University Chhattisgarh, Raipur, India Email. : <u>bks0509@gmail.com</u>

ABSTRACT

The Decomposition of the normal Finsler connection tensor N_{ikh}^{i} of a finsler connection in the

form of H Recurrent Finsler Connection and assume that decompose vector field X^i is not independent of directional arguments then thenormal projective curvature tensor are connected by recurrent Finsler connection.

KEYWORDS: Finsler, manifolds, torsion, projective, recurrence

*Corresponding author:

Brijendra Krishna Singh

Department of Mathematics Amity University Chhattisgarh, Raipur, India Email. : <u>bks0509@gmail.com</u>

INTRODUCTION:

A Finsler manifold F_n of dimension n is a manifold F_n associated with a fundamental function $F(x, \dot{x})$, the metric tensor of (F_n, F) is given by

(1.1)
$$g_{ij} = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j F^2$$
 where $\dot{\partial}_i = \partial / \partial_{\dot{x}^i}$.

A Finsler connection of (F_n, F) is a triad $(F_{jk}^i, N_k^i, C_{jk}^i)$ of a v-connection F_{jk}^i , a nonlinear connection N_k^i and a vertical connection C_{jk}^i [6]. The h- and v- covariant derivatives of any tensor field V_j^i corresponding to a given Finsler connection is given by

(1.2)
$$V_{j|k}^{i} = d_{k} V_{j}^{i} + V_{j}^{m} F_{mk}^{i} - V_{m}^{i} F_{jk}^{m},$$

(1.3) $V_{j|k}^{i} = \partial_{k} V_{j}^{i} + V_{j}^{m} C_{mk}^{i} - V_{m}^{i} C_{jk}^{m}$

where (1.4) $d_k = \partial_k - N_k^m \partial_m$, $\partial_k = \partial/\partial_{xk}$.

From a given Finsler metric we can determine various Finsler connections. In the present studies we shall use the Cartan connection which will be denoted by $C\Gamma:(\Gamma_{jk}^{-xi}, G_k^i, C_{jk}^i)$. These connections can be uniquely determined from the metric function *F* by the following axioms:

 (A_1) The connection is h – metrical i.e. $g_{ij}/k = 0$,

 (A_2) The connection is v – metrical i.e. $g_{ij}/k = 0$,

 (A_3) The deflection tensor field D_k^i vanishes,

 (A_4) The (h) h – torsion tensor field T_{jk}^i vanishes,

 (A_5) The (v) v – torsion tensor field S^i_{ik} vanishes.

All these five axioms have been mentioned in [7]. The individual members of the triad are given as

 $(1.13) \ \Gamma_{jk}^{xi} = \frac{1}{2} g^{ih} (d_k g_{jh} + d_j g_{kh} - d_h g_{jk}),$ $(1.14) \ a) \ G_k^i = \partial_k \ G^i = \gamma_{ok}^i - 2 C_{km}^i \ G^n,$ $b) \ G^i = \frac{1}{2} \gamma_{oo}^i,$ $(1.15) \ C_{j|k}^i = g^{ih} C_{jhk}, \qquad C_{jhk} = \frac{1}{2} \partial_h g_{jk},$ where (1.16) $\gamma_{jk}^i = \frac{1}{2} g^{ih} (\partial_k g_{jh} + \partial_j g_{kh} - \partial_h g_{jk}),$

DEFINITION (1.1):

IJSRR, 8(2) April. - June., 2019

A Finsler connection will be called h-recurrent Finsler connection $RF\Gamma$ if it satisfies the following axioms:

 $(A_1)'$ The connection is h-recurrent with recurrence vector α_k i.e. $g_{ij|k} = \alpha_k g_{ij}$.

 (A_2) ' The connection is v-metrical i.e. $g_{ij|k} = 0$.

 $(A_3)'$ The deflection tensor field is given by D_k^i .

 (A_4) ' The (h) h-torsion tensor field T_{jk}^i vanishes.

 $(A_5)'$ The (v) v-torsion tensor field S_{jk}^i vanishes.

In view of equations (1.18), (1.20) and (1.22) we find that the h-recurrent Finsler connection $RF\Gamma$ are given by

 $(1.23) \ F_{jk}^{i} = \overset{c}{F}_{jk}^{i} - C_{km}^{i} X_{j}^{m} - C_{jm}^{i} X_{k}^{m} + C_{jkm} X^{mi},$ $(1.24) \ N_{k}^{i} = \overset{c}{N}_{k}^{i} + X_{k}^{i},$ $(1.25) \ C_{jk}^{i} = \overset{c}{C}_{jk}^{i} = \frac{1}{4} g^{ih} \dot{\partial}_{h} \dot{\partial}_{j} \dot{\partial}_{k} F^{2}$

Where (1.26) $X_k^i = C_{km}^i B_o^m - B_k^i$,

(1.27)
$$B_k^i = D_k^i + \frac{1}{2} (\alpha_o \, \delta_k^o + \alpha_k \, \dot{x}^i - \alpha^i y_k)$$

(1.28) $X^{mi} = g^{ji} \, X_j^m$

and $\begin{pmatrix} c^{i} & c^{i} & c^{i} \\ F_{jk}, N_{k}, C_{jk} \end{pmatrix}$ are the coefficients of Cartan connection $C\Gamma$. With the help of the equations (1.8),

(1.23) and (1.24) the (v) hv –torsion tensor $RF\Gamma$ can be written as

(1.29)
$$P_{jk}^{i} = P_{jk}^{c^{i}} + X_{j}^{i} | k + C_{jm}^{i} X_{k}^{m} + C_{jkm} (X^{im} - X^{mi})$$

where P_{jk}^{i} is the (v) hv-torsion tensor of Cartan connection $C\Gamma$ and |means v-covariant differentiation with respect to $C\Gamma$ or $RF\Gamma$. Again using the equations (1.7) and (1.24), we get the following alternative form of (v) hv-torsion tensor of $RF\Gamma$.

$$(1.30) R_{jk}^{v} = R_{jk}^{c} - P_{jm}^{c} X_{k}^{m} + P_{km}^{c} X_{j}^{m} + X_{j}^{i} + C_{|k} - X_{k}^{i} C_{|j} - X_{k}^{m} X_{j}^{i}|_{m} + X_{j}^{m} X_{k}^{i}|_{m} - C_{jm}^{i} X_{r}^{i} X_{k}^{m} + C_{km}^{r} X_{r}^{i} X_{j}^{m}$$

THE (v) hv-TORSION TENSOR OF THE FORM $P_{jk}^i = -\dot{\delta}_k B_j^i$

In this section we shall pay our attention to that h-recurrent Finsler connection $RF\Gamma$ whose (v) hvtorsion tensor P_{jk}^{i} is being expressed by the following equation

$$(4.1)P_{jk}^i = -\dot{\delta}_k B_j^i,$$

where B_j^i is the tensor field of the Finsler connection (1.27). Using (4.11) in (1.29), we get

(4.2)
$$\overset{c}{P}_{jk}^{i} = \dot{\delta}_{k} (C_{jr}^{i}B_{0}^{r}) + C_{mk}^{i}X_{j}^{m} + C_{jm}^{i}X_{k}^{m} - C_{jkm}X^{mi} = 0.$$

Using $\dot{\delta}_k g_{ij} = 2C_{ijk}$ in (4.2), we get

(4.3)
$$P_{ijk} + \dot{\delta}_k (C_{ijr} B_0^r) - 2C_{irk} C_{jm}^r B_0^m + C_{imk} X_k^m + C_{ijm} X_k^m - C_{jkm} X_i^m = 0.$$

Since C_{ijk} and $\stackrel{c}{P}_{ijk}$ are symmetric in *i* and *j*, hence from (4.3), we get

(4.4)
$$S_{ijmk} B_0^m C_{imk} X_j^m - C_{jmk} X_i^m = 0.$$

Multiplying (4.4) by \dot{x}^i , we get

$$(4.5) C_{imk} X_0^m = 0.$$

An obvious of (4.5) is the equation

(4.6)
$$X_{j}^{i} = -B_{j}^{i}$$
 and $C_{ikm}B_{j}^{m} = C_{jkm}B_{i}^{m}$.

In the light of these observations from (4.3), we get

(4.7)
$$\stackrel{c}{P}_{ijk} = C_{ikm}B_i^m$$
.

Substituting these results into the equations (1.30), (1.31) and (1.32), we get

$$(4.8) R_{jk}^{i} = \stackrel{c}{R}_{jk}^{i} B_{j}^{i} C_{|k} + B_{k}^{i} C_{|j} - B_{k}^{m} B_{j}^{i}|_{m} + B_{j}^{m} B_{k}^{i}|_{m},$$

$$(4.9) P_{hjk}^{i} = \stackrel{c}{P}_{hjk}^{i} S_{hjk}^{i} B_{j}^{r},$$

(4.10) $R_{hjk}^{i} = \overset{c}{R}_{hjk}^{i} + \overset{c}{P}_{hjm}^{i} B_{k}^{m} - \overset{c}{P}_{hkm}^{i} B_{j}^{m} + S_{hrs}^{i} B_{j}^{r} B_{k}^{s}$.

and

If we now assume that

(4.11) $P_{ijk}^{c} = C_{jkm} B_{i}^{m}$ holds,

then this assumption gives

(4.12)
$$C_{ijr}B_k^r = C_{ikr}B_j^r$$
, $C_{ijr}B_0^r = 0$ and $X_j^i = -B_j^i$.

Using (4.12) in (1.27), we get

(4.13)
$$P_{jk}^i = -\dot{\delta}_k B_j^i$$
.

IJSRR, 8(2) April. – June., 2019

Therefore, we can state.

THEOREM (4.1):

If F_n be supposed to be an n-dimensional Finsler space equipped with h-recurrent Finsler connection $RF\Gamma$ and with the deflection tensor D_j^i and recurrence vector α_k , if we further suppose that $B_j^i = D_j^i + \frac{1}{2}(\alpha_0 \delta_j^i + \alpha_j \dot{x}^i - \alpha^i y_j)$ then the (v) hv-curvature tensor P_{jk}^0 of $RF\Gamma$ is given by $P_{jk}^i = -\dot{\delta}_k D_j^i$ if and only if the (v) hv-torsion tensor P_{jk}^i of the connection $C\Gamma$ is represented by $c_{jk}^i = C_{jm}^i B_k^m$ and in such a case the (v) h-torsion tensor R_{jk}^i of the hv-curvature tensor P_{hjk}^i and the hcurvature tensor R_{hjk}^i of recurrent Finsler connection $RF\Gamma$ are respectively given by (4.8), (4.9) and (4.10).

REFERENCES

- 1. Brickell, F.: A theorem on homogeneous functions, J. Lond. Math.Soc., 1967;42: 352-359.
- Hashiguchi, M. : On determination of Finsler connections by deflection tensor fields, Rep. Fac Sci. Kagoshima Univ. (Math, Phy, Chem) 1969; 2: 29-39.
- **3.** Hashiguchi, M.: On Wagner's generalized Berwald Space, J. Korean Math. Soc. 1975 ;12: 51-61,.
- 4. Ikeda, F.: Some remarks on deflection tensor, Tensor (N.S.) 1990; 49:1-6.
- 5. Matsumoto, M.: A Finsler connection with many torsions, Tensor (N.S.) 1966; 17: 217-226.
- Matsumoto, M.: The theory of Finsler connections, Publ. of the study group of Geometry, 5, Deptt Maths., Okayama Univ. 1970; 120.
- 7. Matsumoto, M.: Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Saikawa, Otsa, Japan 1986; 520.
- 8. Prasad, B.N.: On recurrent Finsler connections with deflection and torsion, Publications Shukla, H.S. and Mathe maticae, Hungaria, Singh, D.D. 1990; 37, 77-84.