Intemetional J amel of Saientific Reserchand Reiens

Some common fixed point theorems for three mappings in Vector bmetric spaces

${ }^{1}$ Mamta karma and Kumari Sarita
${ }^{1,2}$ Department of Mathematics Indira Gandhi University, Meerpur, 122502, (Rewari)
Haryana, India

Abstract

In this paper we prove some common fixed point results for three mappings in vector bmetric space. Our results extend and improve some well-known results in literature. We also give an example to justify our results.

KEYWORDS : b-metric space, contraction mapping theorem, vector b-metric space, Rieszspace, weakly compatible.

[^0]
1. INTRODUCTION

Common fixed point theorems for three mappings in metric space were studied by Latpate et al^{1} Similar results can be seen in Abbas et al^{2}, Arshad et $^{3}{ }^{3}$,

Jungck ${ }^{4}$ and Rahimi et al^{5}.Further ,these results were extended for vector metric space by Altun and Cevik ${ }^{6}$.We extend some of the results of fixed point for three mappings defined on vector b-metric space which is aRiesz space valued metric space. Vector b-metric space was defined by Petre 7 in 2014 by defining b-metric on vector metric space. We recall the basic concepts and definitions introduced by Altun andCevik ${ }^{8}$ and Petre ${ }^{7}$.
We follow notions and terminology by AliprantisandBorder ${ }^{9}$, Luxemburg andZannen ${ }^{10}$ for Riesz spaces.

A partially ordered set (E, \leq) is a lattice if each pair of elements has a supremum and infimum.A real linear space E with an order relation \leq on E which is compatible with the algebraic structure of E is called an ordered linear space.Riesz space is an ordered vector space and at the same time a lattice also. Let E be a Riesz space with the positive cone
$E_{+}=\{x \in E: x \geq 0\}$. For an element $x \in E$, the absolute value $|x|$, the positive part x^{+}, the negative part x^{-}are defined as $|\mathrm{x}|=\mathrm{x} v(-\mathrm{x}), \mathrm{x}^{+}=\mathrm{x} \vee 0, \mathrm{x}^{-}=(-\mathrm{x}) \vee 0$ respectively.

If every non-empty subset of E which is bounded above has a supremum, then E is called Dedekind complete or order complete. The Riesz space E is said to be Archimedean if $\frac{1}{\mathrm{n}} \mathrm{a} \downarrow 0$ holds for every $a \in E_{+}$.

Let E be a Riesz space. A sequence $\left(\mathrm{b}_{\mathrm{n}}\right)$ is said to be order convergent or o -convergent to b if there is a sequence $\left(a_{n}\right)$ in E satisfying $a_{n} \downarrow 0$ and $\left|b_{n}-b\right| \leq a_{n}$ for all n, written as $b_{n} \xrightarrow{0} b$ or o.limb b_{n} $=\mathrm{b}$.

A sequence $\left(b_{n}\right)$ is said to be order Cauchy (o-Cauchy) if there exists a sequence $\left(a_{n}\right)$ in E such that $\mathrm{a}_{\mathrm{n}} \downarrow 0$ and $\left|\mathrm{b}_{\mathrm{n}}-\mathrm{b}_{\mathrm{n}+\mathrm{p}}\right| \leq \mathrm{a}_{\mathrm{n}}$ holds for all n and p .
A Riesz space E is said to be o-Cauchy complete if every o-Cauchy sequence is o-convergent.
DEFINITION 1.1[10] :Let X be a non-empty set and E be a Riesz space. Then function $d: X$ $\times \mathrm{X} \rightarrow \mathrm{E}$ is said to be a vector metric (or $\mathrm{E}-$ metric) if it satisfies the following properties:
(a) $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{o}$ if and only if $\mathrm{x}=\mathrm{y}$
(b) $\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{y}, \mathrm{z})$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.

Also the triple ($\mathrm{X}, \mathrm{d}, \mathrm{E}$) is said to be a vector metric space. Vector metric space is generalization of metric space. For arbitrary elements x, y, z, w of a vector metric space, the following statements are satisfied :
(i) $0 \leq \mathrm{d}(\mathrm{x}, \mathrm{y})$
(ii) $d(x, y)=d(y, x)$
(iii) $|\mathrm{d}(\mathrm{x}, \mathrm{z})-\mathrm{d}(\mathrm{y}, \mathrm{z})| \leq \mathrm{d}(\mathrm{x}, \mathrm{y})$
(iv) $|d(x, z)-d(y, w)| \leq d(x, y)+d(z, w)$

A sequence $\left(\mathrm{x}_{\mathrm{n}}\right)$ in a vector metric space (X, d, E) vectorial converges (E-converges) to some
$x \in E$, written as $X_{n} \xrightarrow{\text { d.E }} x$ if there is a sequence $\left(a_{n}\right)$ in E satisfying $a_{n} \downarrow 0$ and $d\left(x_{n}, x\right) \leq a_{n}$ for all n.
A sequence $\left(x_{n}\right)$ is called E-cauchy sequence whenever there exists a sequence $\left(a_{n}\right)$ in E such that $a_{n} \downarrow$ 0 and $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+\mathrm{p}}\right) \leq \mathrm{a}_{\mathrm{n}}$ holds for all n and p .
A vector metric space X is called E-complete if each E-cauchy sequence in X, E converges to a limit in X .

For more detailed discussion regarding vector metric spaces we refer to ${ }^{6,8}$.
When $\mathrm{E}=\mathrm{R}$, the concepts of vectorial convergence and metric convergence, E-cauchy sequence and Cauchy sequence in metric are same.

When also $\mathrm{X}=\mathrm{E}$ and d is the absolute valued vector metric on X , then the concept of vectorial convergence and convergence in order are the same.
DEFINITION 1.2:Let X be a non-empty set and let $s \geq 1$ be a given real number. A function d : $X \times X \rightarrow R^{+}$is called a b-metric provided that, for all $x, y, z \in X$
(i) $\mathrm{d}(\mathrm{x}, \mathrm{y})=0$ if and only if $\mathrm{x}=\mathrm{y}$
(ii) $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$
(iii) $d(x, z) \leq s[d(y, x)+d(y, z)]$

A pair (X, d) is called a b-metric space. It is clear from definition that b-metric space is an extension of usual metric space.
Several authors have investigated fixed point theorems on b-metric spaces, one can see
11, 12.
Petre ${ }^{7}$ defined E-b-metric space or vector b-metric space as follows:
DEFINITION 1.3 [7] :Let X be a nonempty set and $\mathrm{s} \geq 1$, A functional $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{E}_{+}$is called an E-b-metric if for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$, the following conditions are satisfied :
(a) $d(x, y)=0$ if and only if $x=y$
(b) $\quad \mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$
(c) $\mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{s}[\mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{y}, \mathrm{z})]$

The triple ($\mathrm{X}, \mathrm{d}, \mathrm{E}$) is called E-b-metric space.
EXAMPLE 1.4: Let $d:[0,1] \times[0,1] \rightarrow R^{2}$ defined byd $(x, y)=\left(\alpha|x-y|^{2}, \beta|x-y|^{2}\right)$ then $\left(X, d, R^{2}\right)$ is E-bmetric space where $\alpha, \beta>0$.
DEFINITION 1.5[13]: Let A and B be self maps of a set X if $y=A x=B x$ for some $x \in X$, then y is said to be a point of coincidence and x is said to be a coincidence point of A and B. A pair of maps A and B is called weakly compatible pair if they commute at coincidence points ${ }^{8,11}$.

LEMMA 1.6 [13]:If E is a Riesz space and $\mathrm{a} \leq$ ka where $\mathrm{a} \in \mathrm{E}_{+}$and $\mathrm{k} \in[0,1)$ then $\mathrm{a}=0$.
LEMMA 1.7 [14]: Let P and Q are weakly compatible self-maps on a set Y . If P and Q have a unique point of coincidence $\mathrm{c}=\mathrm{Pc}=\mathrm{Qc}$, then c is the unique common fixed point of P and Q .
2. MAIN RESULTS :In this section, we prove some fixed point theorems for three mappings in vector b-metric space. Kir and Kiziltunc ${ }^{12}$ have investigated common fixed point theorems for weakly compatible pairs for b-metric space, whereas these results on vector metric spaces have been investigated by Rad and Altun ${ }^{15}$
THEOREM 2.1 :Let X be E-b-metric space with E-Archimedean. Suppose the mappings P,Q,R : $\mathrm{X} \rightarrow \mathrm{X}$ satisfy the following conditions :
(i) for all $x, y \in X, d(P x, Q y) \leq \operatorname{tM}_{x, y}(P, Q, R)$
where $\mathrm{t}<\frac{1}{s(s+1)}$ and
$M_{x, y}(P, Q, R) \in\{d(R x, R y), d(P x, R x), d(Q y, R y), d(P x, R y), d(Q y, R x)$
(ii) $\quad \mathrm{P}(\mathrm{X}) \cup \mathrm{Q}(\mathrm{X}) \subseteq \mathrm{R}(\mathrm{X})$
(iii) $\quad R(X)$ is an E-complete subspace of X.

Then $\{P, R\}$ and $\{Q, R\}$ have a unique point of coincidence in X. Moreover, if $\{P, R\}$ and $\{Q, R\}$ are weakly compatible, then P, Q and R have a unique fixed point in X .

PROOF : Let x_{0} be arbitrary point of X. Since $P(X) \subset R(X)$ there exists $x_{1} \in X$ such that $P\left(x_{0}\right)=$ $\mathrm{Rx}_{1}=\mathrm{y}_{1}$.
Since $Q(X) \subset R(X)$ there exists $x_{2} \in X$ such that $Q\left(x_{1}\right)=R x_{2}=y_{2}$.
Continue in this manner, then there exists $x_{2 n+1} \in X$ such that $P\left(x_{2 n}\right)=R x_{2 n+1}=y_{2 n+1}$. there exists $\mathrm{x}_{2 \mathrm{n}+2} \in \mathrm{X}$ such that $\mathrm{Q}\left(\mathrm{x}_{2 \mathrm{n}+1}\right)=\mathrm{Rx}_{2 \mathrm{n}+2}=\mathrm{y}_{2 \mathrm{n}+2}$, for $\mathrm{n}=0,1,2,3 \ldots$.

Firstly, show that

$$
\begin{equation*}
d\left(y_{2 n+1}, y_{2 n+2}\right) \leq \beta d\left(y_{2 n}, y_{2 n+1}\right) \text { for all } n \text { where } \beta<1 \tag{3}
\end{equation*}
$$

From (1), we have :
$d\left(y_{2 n+1}, y_{2 n+2}\right)=d\left(P_{2 n}, Q_{x_{2 n+1}}\right) \leq t M_{X_{2 n}, X_{2 n+1}}(P, Q, R)$ for $n=0,1,2,3 \ldots \ldots$

Since $M_{x_{2 n}, x_{2 n+1}}(P, Q, R) \in\left\{d\left(\operatorname{Rx}_{2 n}, R x_{2 n+1}\right), d\left(P_{2 n}, R x_{2 n}\right), d\left(Q x_{2 n+1}, R x_{2 n+1}\right), d\left(P x_{2 n}, R x_{2 n+1}\right)\right.$, $\left.\mathrm{d}\left(\mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{Rx}_{2 \mathrm{n}}\right)\right\}$

$$
\begin{aligned}
& =\left\{d\left(y_{2 n}, y_{2 n+1}\right), d\left(y_{2 n+1}, y_{2 n}\right), d\left(y_{2 n+2}, y_{2 n+1}\right), d\left(y_{2 n+1}, y_{2 n+1}\right), d\left(y_{2 n+2}, y_{2 n}\right)\right\} \\
& =\left\{d\left(y_{2 n}, y_{2 n+1}\right), d\left(y_{2 n+1}, y_{2 n+2}\right), d\left(y_{2 n}, y_{2 n+2}\right),\right\}
\end{aligned}
$$

If $M_{X_{2 n}, X_{2 n+1}}(P, Q, R)=d\left(y_{2 n}, y_{2 n+1}\right)$, then clearly (3) holds.
If $\mathrm{M}_{\mathrm{X}_{2 \mathrm{n}}, \mathrm{X}_{2 \mathrm{n}+1}}(\mathrm{P}, \mathrm{Q}, \mathrm{R})=\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+2}\right)$, then according to lemma 1.6
$\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+2}\right)=0$, and clearly (3) holds.
Finally, suppose that $\mathrm{M}_{\mathrm{x}_{2 n}, \mathrm{x}_{2 n+1}}(\mathrm{P}, \mathrm{Q}, \mathrm{R})=\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+2}\right)$,
Then, we have
$d\left(y_{2 n+1}, y_{2 n+2}\right) \leq \operatorname{td}\left(y_{2 n}, y_{2 n+2}\right) \leq \operatorname{ts}\left[d\left(y_{2 n}, y_{2 n+1}\right)+d\left(y_{2 n+1}, y_{2 n+2}\right)\right]$
(1-ts) $d\left(y_{2 n+1}, y_{2 n+2}\right) \leq \operatorname{tsd}\left(y_{2 n}, y_{2 n+1}\right)$
$\leq\left(\frac{t s}{1-t s}\right)\left[\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right]$
$=\beta \mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)$, where $\beta=\left(\frac{t s}{1-t s}\right)$
Thus $\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right) \leq \beta^{\mathrm{n}} \mathrm{d}\left(\mathrm{y}_{0}, \mathrm{y}_{1}\right)$, where $\beta \in\left\{t, \frac{t s}{1-t s}\right\}$

Therefore for all n and p ,

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+\mathrm{p}}\right) \leq \\
& \leq \mathrm{sd}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)+\mathrm{s}^{2} \mathrm{~d}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+2}\right)+\mathrm{s}^{3} \mathrm{~d}\left(\mathrm{y}_{\mathrm{n}+2}, \mathrm{y}_{\mathrm{n}+3}\right)+\ldots \ldots+\mathrm{s}^{\mathrm{p}} \mathrm{~d}\left(\mathrm{y}_{\mathrm{n}+\mathrm{p}-1}, \mathrm{y}_{\mathrm{n}+\mathrm{p}}\right) \\
& \quad= \\
& \quad s \beta^{n}\left(\frac{1-(s \beta)^{p}}{1-s \beta}\right) \mathrm{d}\left(\mathrm{y}_{0}, \mathrm{y}_{1}\right)+\mathrm{s}^{2} \beta^{\mathrm{n}+1} \mathrm{~d}\left(\mathrm{y}_{0}, \mathrm{y}_{1}\right)+\ldots \ldots \ldots \ldots+\mathrm{s}^{\mathrm{p}} \beta^{\mathrm{n}+\mathrm{p}-1} \mathrm{~d}\left(\mathrm{y}_{0}, \mathrm{y}_{1}\right) \\
& \quad \leq\left(\frac{s \beta^{n}}{1-s \beta}\right) \mathrm{d}\left(\mathrm{y}_{0}, \mathrm{y}_{1}\right)
\end{aligned}
$$

Since E is Archimedean, then $\left(y_{n}\right)$ is E-Cauchy sequence. Suppose that $R(X)$ is E-complete, there exists a $p \in R(X)$ such that
$\mathrm{Rx}_{2 \mathrm{n}}=\mathrm{y}_{2 \mathrm{n}} \xrightarrow{\text { d.E. }} \mathrm{p}$ and $\mathrm{Rx}_{2 \mathrm{n}+1}=\mathrm{y}_{2 \mathrm{n}+1} \xrightarrow{\text { d.E. }} \mathrm{p}$
Hence there exists a sequence $\left(c_{n}\right)$ in E such that $c_{n} \downarrow 0$ and $d\left(R x_{2 n}, p\right) \leq c_{n}$,
$d\left(R_{2 n+1}, p\right) \leq c_{n+1}$. Since $p \in R(X)$, there exists $k \in X$ such that $R k=p$. Now we prove that $Q k=p$
For this, consider
$\mathrm{d}(\mathrm{p}, \mathrm{Qk}) \leq \operatorname{sd}\left(\mathrm{p}, \mathrm{Px}_{2 \mathrm{n}}\right)+\operatorname{sd}\left(\mathrm{Px}_{2 \mathrm{n}}, \mathrm{Qk}\right)$
$\leq \mathrm{sc}_{\mathrm{n}+1}+\mathrm{stM}_{\mathrm{x}_{2 \mathrm{n}}, \mathrm{k}}(\mathrm{P}, \mathrm{Q}, \mathrm{R})$
where $M_{x_{2 n}, k}(P, Q, R) \in\left\{d\left(\mathrm{Rx}_{2 n}, R_{k}\right), d\left(\mathrm{Px}_{2 n}, R x_{2 n}\right), d(Q k, R k), d\left(\mathrm{Px}_{2 \mathrm{n}}, R k\right), d\left(Q k, R x_{2 n}\right)\right\}$
$=\left\{\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{p}\right), \mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{d}(\mathrm{Qk}, \mathrm{p}), \mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{p}\right), \mathrm{d}\left(\mathrm{Qk}, \mathrm{y}_{2 \mathrm{n}}\right)\right\}$ for all n .
There are five possibilities:
Case 1: $d(p, Q k) \leq \mathrm{sc}_{\mathrm{n}+1}+\mathrm{st} \mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{p}\right) \leq \mathrm{sc}_{\mathrm{n}+1}+\mathrm{stc}_{\mathrm{n}} \leq \mathrm{s}(\mathrm{t}+1) \mathrm{c}_{\mathrm{n}}$.
Case 2: $d(p, Q k) \leq \operatorname{sc}_{n+1}+\operatorname{st} d\left(y_{2 n+1}, y_{2 n}\right) \leq \operatorname{sc}_{n+1}+\operatorname{st}\left[s d\left(y_{2 n+1}, p\right)+s d\left(p, y_{2 n}\right)\right]$

$$
\leq \mathrm{sc}_{\mathrm{n}+1}+\mathrm{st}\left[\mathrm{sc}_{\mathrm{n}+1}+\mathrm{sc}_{\mathrm{n}}\right] \leq \mathrm{s}(2 \mathrm{st}+1) \mathrm{c}_{\mathrm{n}}
$$

Case 3: $\mathrm{d}(\mathrm{p}, \mathrm{Qk}) \leq \mathrm{sc}_{\mathrm{n}+1}+\operatorname{std}(\mathrm{p}, \mathrm{Qk})$

$$
(1-\mathrm{st}) \mathrm{d}(\mathrm{p}, \mathrm{Qk}) \leq \mathrm{sc}_{\mathrm{n}+1}
$$

$\mathrm{d}(\mathrm{p}, \mathrm{Qk}) \leq\left(\frac{\mathrm{s}}{1-\mathrm{st}}\right) \mathrm{c}_{\mathrm{n}+1}$
Case 4: $\mathrm{d}(\mathrm{p}, \mathrm{Qk}) \leq \mathrm{sc}_{\mathrm{n}+1}+\mathrm{st} \mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{p}\right)$

$$
\leq \mathrm{sc}_{\mathrm{n}+1}+\operatorname{stc}_{\mathrm{n}+1} \leq \mathrm{s}(\mathrm{t}+1) \mathrm{c}_{\mathrm{n}} .
$$

Case $5: \mathrm{d}(\mathrm{p}, \mathrm{Qk}) \leq \mathrm{sc}_{\mathrm{n}+1}+\operatorname{std}\left(\mathrm{Qk}, \mathrm{y}_{2 \mathrm{n}}\right)$

$$
\leq \mathrm{sc}_{\mathrm{n}+1}+\mathrm{st}\left[\operatorname{sd}(\mathrm{Qk}, \mathrm{p})+\operatorname{sd}\left(\mathrm{p}, \mathrm{y}_{2 \mathrm{n}}\right)\right]
$$

$\left(1-s^{2} t\right) d(p, Q k) \leq s c_{n+1}+s^{2} t d\left(p, y_{2 n}\right)$
$\left(1-s^{2} t\right) d(p, Q k) \leq \mathrm{sc}_{n+1}+\mathrm{s}^{2} \mathrm{tc}_{\mathrm{n}}$
$\mathrm{d}(\mathrm{p}, \mathrm{Qk}) \leq\left(\frac{\mathrm{s}(1+\mathrm{st})}{1-\mathrm{s}^{2} \mathrm{t}}\right) \mathrm{c}_{\mathrm{n}}$
Since the infimum of the sequences on the right hand side are zero, then $\mathrm{d}(\mathrm{p}, \mathrm{Qk})=0$, that is $\mathrm{Qk}=\mathrm{p}$. Therefore $\mathrm{Qk}=\mathrm{Rk}=\mathrm{p}$, i.e. p is a point of coincidence of mappings Q, R and k is a coincidence point of mappings Q and R .
Now we show that $\mathrm{Pk}=\mathrm{p}$, consider
$\mathrm{d}(\mathrm{Pk}, \mathrm{p}) \leq \operatorname{sd}\left(\mathrm{Pk}, \mathrm{Qx}_{2 \mathrm{n}+1}\right)+\operatorname{sd}\left(\mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{p}\right) \leq \mathrm{sc}_{\mathrm{n}+1}+\mathrm{stM}_{\mathrm{x}_{\mathrm{k}}, 2 \mathrm{n}+1}(\mathrm{P}, \mathrm{Q}, \mathrm{R})$
where $M_{x_{k}, 2 n+1}(P, Q, R) \in\left\{d\left(R k, R x_{2 n+1}\right), d(P k, R k), d\left(Q x_{2 n+1}, R x_{2 n+1}\right), d\left(P k, R x_{2 n+1}\right)\right.$,
$\left.\mathrm{d}\left(\mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{Rk}\right)\right\}$
$=\left\{d\left(p, y_{2 n+1}\right), d(P k, p), d\left(y_{2 n+2}, y_{2 n+1}\right), d\left(P k, y_{2 n+1}\right), d\left(Q x_{2 n+1}, p\right)\right\}$ for all n.
There are five possibilities:
Case 1: $\mathrm{d}(\mathrm{Pk}, \mathrm{p}) \leq \mathrm{sc}_{\mathrm{n}+1}+\operatorname{std}\left(\mathrm{p}, \mathrm{y}_{2 \mathrm{n}+1}\right) \leq \mathrm{sc}_{\mathrm{n}+1}+\operatorname{stc}_{\mathrm{n}+1} \leq \mathrm{s}(\mathrm{t}+1) \mathrm{c}_{\mathrm{n}}$.
Case 2: $\mathrm{d}(\mathrm{Pk}, \mathrm{p}) \leq \mathrm{sc}_{\mathrm{n}+1}+\operatorname{std}(\mathrm{Pk}, \mathrm{p})$
(1-st) $d(P k, p) \leq \mathrm{sc}_{\mathrm{n}+1}$
$\mathrm{d}(\mathrm{Pk}, \mathrm{p}) \leq\left(\frac{\mathrm{s}}{1-\mathrm{st}}\right) \mathrm{c}_{\mathrm{n}+1}$

Case 3: $\mathrm{d}(\mathrm{Pk}, \mathrm{p}) \leq \operatorname{sc}_{\mathrm{n}+1}+\operatorname{std}\left(\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}+1}\right) \leq \operatorname{sc}_{\mathrm{n}+1}+\operatorname{st}\left[\operatorname{sd}\left(\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{p}\right)+\operatorname{sd}\left(\mathrm{p}, \mathrm{y}_{2 \mathrm{n}+1},\right)\right]$

$$
\mathrm{d}(\mathrm{Pk}, \mathrm{p}) \leq \mathrm{sc}_{\mathrm{n}+1}+\mathrm{st}\left[\mathrm{sc}_{\mathrm{n}+2}+\mathrm{sc}_{\mathrm{n}+1}\right]
$$

$\mathrm{d}(\mathrm{Pk}, \mathrm{p}) \leq \mathrm{sc}_{\mathrm{n}+1}+\mathrm{s}^{2} \mathrm{tsc} \mathrm{c}_{\mathrm{n}+1} \leq \mathrm{s}(\mathrm{st}+1) \mathrm{c}_{\mathrm{n}+1}$.
Case 4: $\mathrm{d}(\mathrm{Pk}, \mathrm{p}) \leq \mathrm{sc}_{\mathrm{n}+1}+\mathrm{std}\left(\mathrm{Pk}, \mathrm{y}_{2 \mathrm{n}+1}\right)$

$$
\leq \mathrm{sc}_{\mathrm{n}+1}+\mathrm{st}\left[\mathrm{sd}(\mathrm{Pk}, \mathrm{p})+\mathrm{sd}\left(\mathrm{p}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right] \leq \mathrm{sc}_{\mathrm{n}+1}+\mathrm{s}^{2} \mathrm{td}(\mathrm{Pk}, \mathrm{p})+\mathrm{s}^{2} \mathrm{tc}_{\mathrm{n}+1}
$$

$\left(1-s^{2} t\right) d(P k, p) \leq s(1+s t) c_{n+1}$.
$\mathrm{d}(\mathrm{Pk}, \mathrm{p}) \leq\left(\frac{\mathrm{s}(1+\mathrm{st})}{\left(1-\mathrm{s}^{2} \mathrm{t}\right)}\right) \mathrm{c}_{\mathrm{n}+1}$
Case 5: $\mathrm{d}(\mathrm{Pk}, \mathrm{p}) \leq \mathrm{sc}_{\mathrm{n}+1}+\operatorname{std}\left(\mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{p}\right)$

$$
\leq \mathrm{sc}_{\mathrm{n}+1}+\operatorname{stc}_{\mathrm{n}+1} \leq \mathrm{s}(1+\mathrm{t}) \mathrm{c}_{\mathrm{n}+1}
$$

Since the infimum of thesequences on the right hand side are zero, then $\mathrm{d}(\mathrm{Pk}, \mathrm{p})=0$, that is $\mathrm{Pk}=\mathrm{p}$. Therefore $P k=R k=p$, i.e. p is a point of coincidence of mappings P, R and k is a coincidence point of mappings P and R.
Now it remains to prove that p is a unique point of coincidence of pairs $\{P, R\}$ and $\{Q, R\}$.
Let p^{\prime} be also a point of coincidence of these three mappings, then $\mathrm{Pk}^{\prime}=\mathrm{Qk}^{\prime}=\mathrm{Rk}^{\prime}=\mathrm{p}^{\prime}$,
for $k^{\prime} \in X$, we have,
$\mathrm{d}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)=\mathrm{d}\left(\mathrm{Pk}, \mathrm{Qk}^{\prime}\right) \leq \mathrm{tM}_{\mathrm{k}, \mathrm{k}^{\prime}}(\mathrm{P}, \mathrm{Q}, \mathrm{R})$
where $\mathrm{M}_{\mathrm{k}, \mathrm{k}^{\prime}}(\mathrm{P}, \mathrm{Q}, \mathrm{R}) \in\left\{\mathrm{d}\left(\mathrm{Rk}, \mathrm{Rk}^{\prime}\right), \mathrm{d}(\mathrm{Pk}, \mathrm{Rk}), \mathrm{d}\left(\mathrm{Qk}^{\prime}, \mathrm{Rk} \mathrm{k}^{\prime}\right), \mathrm{d}\left(\mathrm{Pk}, \mathrm{Rk} \mathrm{k}^{\prime}\right), \mathrm{d}\left(\mathrm{Qk} \mathrm{k}^{\prime}, \mathrm{Rk}\right)\right\}$
$=\left\{0, \mathrm{~d}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)\right\}$
If $\{P, R\}$ and $\{Q, R\}$ are weakly compatible, then p is a unique common fixed point of P, Q and R.
COROLLARY 2.2 :Let X be E-b-metric space with E Archimedean. Suppose the mappingsP,R :
$X \rightarrow X$ satisfy the following conditions:
(i) for all $x, y \in X, d(P x, P y) \leq t M_{x, y}(P, R)$
where $\mathrm{t}<\frac{1}{s(s+1)}$
$M_{x, y}(P, R) \in\{d(R x, R y), d(P x, R x), d(P y, R y), d(P x, R y), d(P y, R x)\}$
(ii) $\quad \mathrm{P}(\mathrm{X}) \subseteq \mathrm{R}(\mathrm{X})$
(iii) $\quad R(X)$ is E-complete subspace of X.

Then $\{P, R\}$ have a unique point of coincidence in X. Moreover, if $\{P, R\}$ are weakly compatible, then they have a unique fixed point in X .
EXAMPLIE 2.3 : Let $\mathrm{E}=\mathrm{R}^{2}$ with coordinatewise ordering defined by $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \leq\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ if and only if $\mathrm{x}_{1} \leq \mathrm{x}_{2}$ and $\mathrm{y}_{1} \leq \mathrm{y}_{2}, \mathrm{X}=\mathrm{R}$ and $\mathrm{d}(\mathrm{x}, \mathrm{y})=\left(|\mathrm{x}-\mathrm{y}|^{2}, \mathrm{c}|\mathrm{x}-\mathrm{y}|^{2}\right)$ with $\mathrm{c}>0$.
Define the mappings $P x=x^{2}+3, R x=2 x^{2}$.

For all $x, y \in X$, we have
$\mathrm{d}(\mathrm{Px}, \mathrm{Py})=\frac{1}{2} \mathrm{~d}(\mathrm{Rx}, \mathrm{Ry}) \leq \mathrm{tM}_{\mathrm{x}, \mathrm{y}}(\mathrm{P}, \mathrm{R})$
with $\quad \mathrm{M}_{\mathrm{x}, \mathrm{y}}(\mathrm{P}, \mathrm{R})=\mathrm{d}(\mathrm{Rx}, \operatorname{Ry})$ for $\mathrm{k} \in\left[\frac{1}{2}, 1\right)$.
Moreover, $\mathrm{P}(\mathrm{X})=[3, \infty) \subset[0, \infty)=\mathrm{R}(\mathrm{X})$.
THEOREM 2.4 :Let X be E-b-metric space with E Archimedean. Suppose the mappings P,Q,R :
$X \rightarrow X$ satisfy the following conditions :
(i) for all $x, y \in X, d(P x, Q y) \leq t M_{x, y}(P, Q, R)$
where $\mathrm{t}<\frac{2}{s(s+2)}$ and
$M_{x, y}(P, Q, R) \in\left\{\frac{1}{2}[d(R x, R y)+d(P x, R x)], \frac{1}{2}[d(R x, R y)+d(P x, R y)], \frac{1}{2}[d(R x, R y)+d(Q y, R x)]\right.$,
$\frac{1}{2}[\mathrm{~d}(R x, R y)+\mathrm{d}(Q y, R y)], \frac{1}{2}[\mathrm{~d}(P x, R x)+\mathrm{d}(Q y, R y)], \frac{1}{2}[d(P x, R y)+$
d(Qy, Rx) $]\}$
(ii) $\quad \mathrm{P}(\mathrm{X}) \cup \mathrm{Q}(\mathrm{X}) \subseteq \mathrm{R}(\mathrm{X})$
(iii) $R(X)$ is an E-complete subspace of X.

Then $\{P, R\}$ and $\{Q, R\}$ have a unique common point of coincidence in X. Moreover, if $\{P, R\}$ and $\{Q, R\}$ are weakly compatible, then they have a unique fixed point in X.
PROOF :We define the sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ as in proof of theorem 2.1
Firstly, show that

$$
\begin{equation*}
d\left(y_{2 n+1}, y_{2 n+2}\right) \leq \beta d\left(y_{2 n}, y_{2 n+1}\right) \text { for all } n . \tag{8}
\end{equation*}
$$

From (6), we have :
$d\left(y_{2 n+1}, y_{2 n+2}\right)=d\left(P_{2 n}, Q_{2 n+1}\right) \leq t M_{X_{2 n}, x_{2 n+1}}(P, Q, R)$ for $n=0,1,2,3 \ldots \ldots$
Since
$M_{X_{2 n}, x_{2 n+1}}(P, Q, R) \in\left\{\frac{1}{2}\left[d\left(\operatorname{Rx}_{2 n}, R x_{2 n+1}\right)+d\left(P_{2 n}, R x_{2 n}\right)\right], \frac{1}{2}\left[d\left(\operatorname{Rx}_{2 n}, R x_{2 n+1}\right)+d\left(P_{2 n}, R x_{2 n+1}\right)\right], \frac{1}{2}\right.$
$\left[d\left(\operatorname{Rx}_{2 n}, R x_{2 n+1}\right)+d\left(Q x_{2 n+1}, R x_{2 n}\right)\right], \frac{1}{2}\left[d\left(\operatorname{Rx}_{2 n}, R x_{2 n+1}\right)+d\left(Q x_{2 n+1}, R x_{2 n+1}\right)\right]$,
$\left.\frac{1}{2}\left[d\left(P_{x_{2 n}}, R x_{2 n}\right)+d\left(Q x_{2 n+1}, R x_{2 n+1}\right)\right], \frac{1}{2}\left[d\left(P_{2 n}, R x_{2 n+1}\right)+d\left(Q x_{2 n+1}, R x_{2 n}\right)\right]\right\}$
$=\left\{\frac{1}{2}\left[d\left(y_{2 n}, y_{2 n+1}\right)+d\left(y_{2 n+1}, y_{2 n}\right)\right], \frac{1}{2}\left[d\left(y_{2 n}, y_{2 n+1}\right)+d\left(y_{2 n+1}, y_{2 n+1}\right)\right], \frac{1}{2}\left[d\left(y_{2 n}, y_{2 n+1}\right)+d\left(y_{2 n+2}\right.\right.\right.$, $\left.\left.\mathrm{y}_{2 \mathrm{n}}\right)\right], \frac{1}{2}\left[\mathrm{~d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right], \frac{1}{2}\left[\mathrm{~d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right]$,
$\left.\frac{1}{2}\left[\mathrm{~d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}}\right)\right]\right\}$
$=\left\{d\left(y_{2 n}, y_{2 n+1}\right), \frac{1}{2}\left[d\left(y_{2 n}, y_{2 n+1}\right)\right], \frac{1}{2}\left[d\left(y_{2 n}, y_{2 n+1}\right)+d\left(y_{2 n+2}, y_{2 n}\right)\right], \frac{1}{2}\left[d\left(y_{2 n}, y_{2 n+1}\right)+\right.\right.$
$\left.\left.\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right], \frac{1}{2}\left[\mathrm{~d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+2}\right)\right]\right\}$
If $M_{X_{2 n}, x_{2 n+1}}(P, Q, R)=d\left(y_{2 n}, y_{2 n+1}\right)$ or $\frac{1}{2}\left[d\left(y_{2 n}, y_{2 n+1}\right)\right]$ then clearly (8) holds.
If $M_{X_{2 n}, x_{2 n+1}}(P, Q, R)=\frac{1}{2}\left[d\left(y_{2 n}, y_{2 n+1}\right)+d\left(y_{2 n+2}, y_{2 n}\right)\right]$
Then $\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+2}\right) \leq \frac{\mathrm{t}}{2}\left[\mathrm{~d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right]+\frac{\mathrm{t}}{2}\left[\mathrm{~d}\left(\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}}\right)\right]$

$$
\leq \frac{\mathrm{t}}{2}\left[\mathrm{~d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right]+\frac{\mathrm{t}}{2}\left[\operatorname{sd}\left(\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}+1}\right)+\operatorname{sd}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right)\right]
$$

$\left(1-\frac{\mathrm{st}}{2}\right) \mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+2}\right) \leq(1+s) \frac{t}{2}\left[\mathrm{~d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right]$
$\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+2}\right) \leq \frac{t}{2}\left(\frac{1+s}{1-\frac{s t}{2}}\right)\left[\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right] \leq \beta^{\prime}\left[\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right], \quad$ where $\beta^{\prime}=\frac{t}{2}\left(\frac{1+s}{1-\frac{s t}{2}}\right)$
If $M_{x_{2 n}, x_{2 n+1}}(P, Q, R)=\frac{1}{2}\left[d\left(y_{2 n}, y_{2 n+1}\right)+d\left(y_{2 n+2}, y_{2 n+1}\right)\right]$
Then $d\left(y_{2 n+1}, y_{2 n+2}\right) \leq \frac{t}{2}\left[d\left(y_{2 n}, y_{2 n+1}\right)\right]+\frac{t}{2}\left[d\left(y_{2 n+2}, y_{2 n+1}\right)\right]$
$\left(1-\frac{t}{2}\right) d\left(y_{2 n+1}, \mathrm{y}_{2 \mathrm{n}+2}\right) \leq \frac{\mathrm{t}}{2}\left[\mathrm{~d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right]$
$\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+2}\right) \leq\left(\frac{\frac{t}{2}}{1-\frac{t}{2}}\right)\left[\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right] \leq \beta^{\prime \prime}\left[\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right], \quad$ where $\beta^{\prime \prime}=\left(\frac{\frac{t}{2}}{1-\frac{t}{2}}\right)$
If $M_{X_{2 n}, x_{2 n+1}}(P, Q, R)=\frac{1}{2}\left[d\left(y_{2 n}, y_{2 n+2}\right)\right]$
Then $d\left(y_{2 n+1}, y_{2 n+2}\right) \leq \frac{t}{2}\left[\operatorname{sd}\left(y_{2 n}, y_{2 n+1}\right)+\operatorname{sd}\left(y_{2 n+1}, y_{2 n+2}\right)\right]$
$\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+2}\right) \leq\left(\frac{\frac{s t}{2}}{1-\frac{s t}{2}}\right)\left[\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right] \leq \beta^{\prime \prime \prime}\left[\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right], \quad$ where $\beta^{\prime \prime \prime}=\left(\frac{\frac{s t}{2}}{1-\frac{s t}{2}}\right)$.
Therefore $\quad d\left(y_{n}, y_{n+1}\right) \leq\left(\beta^{\prime \prime \prime}\right)^{n} d\left(y_{0}, y_{1}\right)$
By using (9), for all n and p, we have

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+\mathrm{p}}\right) & \leq \mathrm{sd}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)+\mathrm{s}^{2} \mathrm{~d}\left(\mathrm{y}_{\mathrm{n}+1,}, \mathrm{y}_{\mathrm{n}+2}\right)+\ldots \ldots \ldots \ldots+\mathrm{s}^{\mathrm{p}} \mathrm{~d}\left(\mathrm{y}_{\mathrm{n}+\mathrm{p}-1}, \mathrm{y}_{\mathrm{n}+\mathrm{p}}\right) \\
& \leq \mathrm{s} \quad\left(\beta^{\prime \prime \prime}\right)^{\mathrm{n}} \quad \mathrm{~d}\left(\mathrm{y}_{0}, \mathrm{y}_{1}\right)+\mathrm{s}^{2} \quad\left(\beta^{\prime \prime \prime}\right)^{\mathrm{n}+1} \quad \mathrm{~d}\left(\mathrm{y}_{0}, \mathrm{y}_{1}\right) \quad+\ldots \ldots \ldots+\mathrm{s}^{\mathrm{n}+\mathrm{p}}\left(\beta^{\prime \prime \prime}\right)^{\mathrm{n}+\mathrm{p}-1} \quad \mathrm{~d}\left(\mathrm{y}_{0}, \mathrm{y}_{1}\right) \\
& =s\left(\beta^{\prime \prime \prime}\right)^{n}\left(\frac{1-\left(s \beta^{\prime \prime \prime}\right)^{p}}{1-\left(s \beta^{\prime \prime \prime}\right)}\right) \mathrm{d}\left(\mathrm{y}_{0}, \mathrm{y}_{1}\right) \leq\left(\frac{s\left(\beta^{\prime \prime}\right)^{n}}{1-s \beta^{\prime \prime \prime}}\right) \mathrm{d}\left(\mathrm{y}_{0}, \mathrm{y}_{1}\right)
\end{aligned}
$$

Since E is Archimedean, then $\left(y_{n}\right)$ is E-Cauchy sequence. Suppose that $R(X)$ is E-complete, there exists a $q \in R(X)$ such that
$\mathrm{Rx}_{2 \mathrm{n}}=\mathrm{y}_{2 \mathrm{n}} \xrightarrow{\text { d.E. }} \mathrm{q}$ and $\mathrm{Rx}_{2 \mathrm{n}+1}=\mathrm{y}_{2 \mathrm{n}+1} \xrightarrow{\text { d.E. }} \mathrm{q}$
Hence there exists a sequence (c_{n}) in E such that $c_{n} \downarrow 0$ and $d\left(\operatorname{Rx}_{2 n}, q\right) \leq c_{n}$,
$d\left(\mathrm{Rx}_{2 \mathrm{n}+1}, \mathrm{q}\right) \leq \mathrm{c}_{\mathrm{n}+1}$. Since $\mathrm{q} \in \mathrm{R}(\mathrm{X})$, there exists $\mathrm{k} \in \mathrm{X}$ such that $\mathrm{Rk}=\mathrm{q}$. Now we prove that $\mathrm{Qk}=\mathrm{q}$
For this, consider
$\mathrm{d}(\mathrm{q}, \mathrm{Qk}) \leq \operatorname{sd}\left(\mathrm{q}, \mathrm{Px}_{2 \mathrm{n}}\right)+\operatorname{sd}\left(\mathrm{Px}_{2 \mathrm{n}}, \mathrm{Qk}\right) \leq \mathrm{sc}_{\mathrm{n}+1}+\mathrm{stM}_{\mathrm{X}_{2 \mathrm{n}}, \mathrm{k}}(\mathrm{P}, \mathrm{Q}, \mathrm{R})$
where $M_{x_{2 n}, k}(P, Q, R) \in\left\{\frac{1}{2}\left[d\left(\operatorname{Rx}_{2 n}, R k\right)+d\left(P_{2 n}, R x_{2 n}\right)\right], \frac{1}{2}\left[d\left(R x_{2 n}, R k\right)+d\left(P x_{2 n}, R k\right)\right]\right.$,
$\frac{1}{2}\left[\mathrm{~d}\left(\mathrm{Rx}_{2 \mathrm{n}}, R k\right)+\mathrm{d}\left(\mathrm{Qk}, R \mathrm{Rx}_{2 \mathrm{n}}\right)\right], \frac{1}{2}\left[\mathrm{~d}\left(\mathrm{Rx}_{2 \mathrm{n}}, R k\right)+\mathrm{d}(\mathrm{Qk}, R k)\right], \frac{1}{2}\left[\mathrm{~d}\left(\mathrm{Px}_{2 \mathrm{n}}, R \mathrm{Rx}_{2 \mathrm{n}}\right)+\mathrm{d}(\mathrm{Qk}, R k)\right], \frac{1}{2}$ $\left.\left[\mathrm{d}\left(\mathrm{Px}_{2 \mathrm{n}}, \mathrm{Rk}\right)+\mathrm{d}\left(\mathrm{Qk}, \mathrm{Rx}_{2 \mathrm{n}}\right)\right]\right\}$
$=\left\{\frac{1}{2}\left[d\left(y_{2 n}, q\right)+d\left(y_{2 n+1}, y_{2 n}\right)\right], \frac{1}{2}\left[d\left(y_{2 n}, q\right)+d\left(y_{2 n+1}, q\right)\right], \frac{1}{2}\left[d\left(y_{2 n}, q\right)+d\left(Q k, y_{2 n}\right)\right]\right.$,
$\left.\frac{1}{2}\left[d\left(y_{2 n}, q\right)+d(Q k, q)\right], \frac{1}{2}\left[d\left(y_{2 n+1}, y_{2 n}\right)+d(Q k, q)\right], \frac{1}{2}\left[d\left(y_{2 n+1}, q\right)+d\left(Q k, y_{2 n}\right)\right]\right\}$
There are six possibilities:
Case 1: $d(q, Q k) \leq \operatorname{sc}_{n+1}+\frac{s t}{2}\left[d\left(y_{2 n}, q\right)+d\left(y_{2 n+1}, y_{2 n}\right)\right]$

$$
\leq \operatorname{sc}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2} \mathrm{c}_{\mathrm{n}}+\frac{\mathrm{st}}{2}\left[\operatorname{sd}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{q}\right)+\mathrm{sd}\left(\mathrm{q}, \mathrm{y}_{2 \mathrm{n}}\right)\right]
$$

$\leq \mathrm{sc}_{\mathrm{n}+1}+\frac{\mathrm{st}_{2}}{2} \mathrm{c}_{\mathrm{n}}+\frac{s^{2} t}{2} \mathrm{c}_{\mathrm{n}+1}+\frac{s^{2} t}{2} \mathrm{sc}_{\mathrm{n}}$
$\leq \mathrm{s}\left(1+\frac{t}{2}+\mathrm{st}\right) \mathrm{c}_{\mathrm{n}}$

Case 2: $d(q, Q k) \leq \operatorname{sc}_{n+1}+\frac{s t}{2}\left[d\left(y_{2 n}, q\right)+d\left(y_{2 n+1}, q\right)\right]$
$\leq \mathrm{sc}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2} \mathrm{c}_{\mathrm{n}}+\frac{\mathrm{st}}{2} \mathrm{c}_{\mathrm{n}+1} \leq \mathrm{s}(\mathrm{t}+1) \mathrm{c}_{\mathrm{n}}$.
Case 3: $d(q, Q k) \leq \operatorname{sc}_{n+1}+\frac{s t}{2}\left[d\left(y_{2 n}, q\right)+d\left(Q k, y_{2 n}\right)\right]$

$$
\leq \mathrm{sc}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2} \mathrm{c}_{\mathrm{n}}+\frac{\mathrm{st}}{2}\left[\mathrm{sd}(\mathrm{Qk}, \mathrm{q})+\mathrm{sd}\left(\mathrm{q}, \mathrm{y}_{2 \mathrm{n}}\right)\right]
$$

$\left(1-\frac{s^{2} t}{2}\right) \mathrm{d}(\mathrm{q}, \mathrm{Qk}) \leq \mathrm{sc}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2} \mathrm{c}_{\mathrm{n}}+\frac{s^{2} t}{2} \mathrm{c}_{\mathrm{n}}$
$\mathrm{d}(\mathrm{q}, \mathrm{Qk}) \leq \mathrm{s}\left(\frac{1+\frac{t}{2}+\frac{s t}{2}}{1-\frac{s^{2} t}{2}}\right) \mathrm{c}_{\mathrm{n}}$

Case4: $d(q, Q k) \leq \operatorname{sc}_{n+1}+\frac{s t}{2}\left[d\left(y_{2 n}, q\right)+d(Q k, q)\right]$

$$
\left(1-\frac{s t}{2}\right) \mathrm{d}(\mathrm{q}, \mathrm{Qk}) \leq \mathrm{sc}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2} \mathrm{c}_{\mathrm{n}}
$$

$$
\mathrm{d}(\mathrm{q}, \mathrm{Qk}) \leq s\left(\frac{1+\frac{t}{2}}{1-\frac{s t}{2}}\right) \mathrm{c}_{\mathrm{n}}
$$

Case 5: $\mathrm{d}(\mathrm{q}, \mathrm{Qk}) \leq \mathrm{sc}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2}\left[\mathrm{~d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right)+\mathrm{d}(\mathrm{Qk}, \mathrm{q})\right]$

$$
\left(1-\frac{s t}{2}\right) \mathrm{d}(\mathrm{q}, \mathrm{Qk}) \leq \mathrm{sc}_{\mathrm{n}+1}+\frac{s^{2} t}{2} \mathrm{c}_{\mathrm{n}+1}+\frac{s^{2} t}{2} \mathrm{c}_{\mathrm{n}}
$$

$\mathrm{d}(\mathrm{q}, \mathrm{Qk}) \leq s\left(\frac{1+s t}{1-\frac{s t}{2}}\right) \mathrm{c}_{\mathrm{n}}$

Case 6: $\mathrm{d}(\mathrm{q}, \mathrm{Qk}) \leq \mathrm{sc}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2}\left[\mathrm{~d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{q}\right)+\mathrm{d}\left(\mathrm{Qk}, \mathrm{y}_{2 \mathrm{n}}\right)\right]$

$$
\leq \mathrm{sc}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2} \mathrm{c}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2}\left[\mathrm{sd}(\mathrm{Qk}, \mathrm{q})+\mathrm{sd}\left(\mathrm{q}, \mathrm{y}_{2 \mathrm{n}}\right)\right]
$$

$$
\left(1-\frac{s^{2} t}{2}\right) d(\mathrm{q}, \mathrm{Qk}) \leq \mathrm{sc}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2} \mathrm{c}_{\mathrm{n}+1}+\frac{s^{2} t}{2} \mathrm{c}_{\mathrm{n}}
$$

$\mathrm{d}(\mathrm{q}, \mathrm{Qk}) \leq \mathrm{s}\left(\frac{1+\frac{t}{2}+\frac{s t}{2}}{1-\frac{s^{2} t}{2}}\right) \mathrm{c}_{\mathrm{n}}$,

Since the infimum of the sequences on the right hand side are zero, therefore $\mathrm{d}(\mathrm{q}, \mathrm{Qk})=0$, that is $\mathrm{Qk}=\mathrm{q}$. Therefore $\mathrm{Qk}=\mathrm{Rk}=\mathrm{q}$ i.e. q is a point of coincidence of mappings Q, R and k is a coincidence point of mappings Q and R .

Now we show that $\mathrm{Pk}=\mathrm{q}$,
Consider, $\mathrm{d}(\mathrm{Pk}, \mathrm{q}) \leq \mathrm{sd}\left(\mathrm{Pk}, \mathrm{Qx}_{2 \mathrm{n}+1}\right)+\mathrm{sd}\left(\mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{q}\right) \leq \mathrm{sc}_{\mathrm{n}+1}+\mathrm{stM}_{\mathrm{x}_{\mathrm{k}}, 2 \mathrm{n}+1}(\mathrm{P}, \mathrm{Q}, \mathrm{R})$
where $M_{x_{k}, 2 n+1}(P, Q, R) \in\left\{\frac{1}{2}\left[d\left(R k, R x_{2 n+1}\right)+d(P k, R k)\right], \frac{1}{2}\left[d\left(R k, R x_{2 n+1}\right)+d\left(P k, R x_{2 n+1}\right)\right], \frac{1}{2}\right.$
$\left[d\left(R k, R x_{2 n+1}\right)+d\left(Q x_{2 n+1}, R k\right)\right], \frac{1}{2}\left[d\left(R k, R x_{2 n+1}\right)+d\left(Q x_{2 n+1}, R x_{2 n+1}\right)\right]$,
$\left.\frac{1}{2}\left[\mathrm{~d}(\mathrm{Pk}, \mathrm{Rk})+\mathrm{d}\left(\mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{Rx}_{2 \mathrm{n}+1}\right)\right], \frac{1}{2}\left[\mathrm{~d}\left(\mathrm{Pk}, \mathrm{Rx}_{2 \mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{Rk}\right)\right]\right\}$
$=\left\{\frac{1}{2}\left[d\left(q, y_{2 n+1}\right)+d(P k, q)\right], \frac{1}{2}\left[d\left(q, y_{2 n+1}\right)+d\left(P k, y_{2 n+1}\right)\right], \frac{1}{2}\left[d\left(q, y_{2 n+1}\right)+d\left(y_{2 n+2}, q\right)\right]\right.$,
$\left.\frac{1}{2}\left[d\left(q, y_{2 n+2}\right)+d\left(y_{2 n+2}, y_{2 n+1}\right)\right], \frac{1}{2}\left[d(P k, q)+d\left(y_{2 n+2}, y_{2 n+1}\right)\right], \frac{1}{2}\left[d\left(P k, y_{2 n+1}\right)+d\left(y_{2 n+2}, q\right)\right]\right\}$

There are six possibilities:
Case 1: $\mathrm{d}(\mathrm{Pk}, \mathrm{q}) \leq \mathrm{sc}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2}\left[\mathrm{~d}\left(\mathrm{q}, \mathrm{y}_{2 \mathrm{n}+1}\right)+\mathrm{d}(\mathrm{Pk}, \mathrm{q})\right]$
$\left(1-\frac{s t}{2}\right) \mathrm{d}(\mathrm{Pk}, \mathrm{q}) \leq \mathrm{sc}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2} \mathrm{c}_{\mathrm{n}+1}$
$\mathrm{d}(\mathrm{Pk}, \mathrm{q}) \leq s\left(\frac{1+\frac{t}{2}}{\left(1-\frac{s t}{2}\right)}\right) \mathrm{c}_{\mathrm{n}+1}$
Case 2: $\mathrm{d}(\mathrm{Pk}, \mathrm{q}) \leq \mathrm{sc}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2}\left[\mathrm{~d}\left(\mathrm{q}, \mathrm{y}_{2 \mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{Pk}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right]$
$\mathrm{d}(\mathrm{Pk}, \mathrm{q}) \leq \mathrm{sc}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2} \mathrm{c}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2}\left[\mathrm{sd}(\mathrm{Pk}, \mathrm{q})+\mathrm{sd}\left(\mathrm{q}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right]$
$\left(1-\frac{s^{2} t}{2}\right) d(P k, q) \leq \mathrm{sc}_{n+1}+\frac{s t}{2} \mathrm{c}_{\mathrm{n}+1}+\frac{s^{2} t}{2} \mathrm{c}_{\mathrm{n}+1}$
$\mathrm{d}(\mathrm{Pk}, \mathrm{q}) \leq \mathrm{s}\left(\frac{1+\frac{t}{2}+\frac{s t}{2}}{1-\frac{s^{2} t}{2}}\right) \mathrm{c}_{\mathrm{n}}$
Case 3: $\mathrm{d}(\mathrm{Pk}, \mathrm{q}) \leq \mathrm{sc}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2}\left[\mathrm{~d}\left(\mathrm{q}, \mathrm{y}_{2 \mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+2, \mathrm{q}} \mathrm{q}\right)\right] \leq \mathrm{sc}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2} \mathrm{c}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2} \mathrm{c}_{\mathrm{n}+1}$

$$
\mathrm{d}(\mathrm{Pk}, \mathrm{q}) \leq \mathrm{s}(1+\mathrm{t}) \mathrm{c}_{\mathrm{n}+1}
$$

Case 4: $d(P k, q) \leq \operatorname{sc}_{n+1}+\frac{s t}{2}\left[d\left(q, y_{2 n+1}\right)+d\left(y_{2 n+2}, y_{2 n+1}\right)\right]$

$$
\leq \mathrm{sc}_{n+1}+\frac{\mathrm{st}}{2} \mathrm{c}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2}\left[\operatorname{sd}\left(y_{2 n+2}, q\right)+\operatorname{sd}\left(y_{2 n+1}, q\right)\right]
$$

$\leq \mathrm{sc}_{\mathrm{n}+1}+\frac{\mathrm{st}}{2} \mathrm{c}_{\mathrm{n}+1}+\frac{s^{2} t}{2} \mathrm{c}_{\mathrm{n}+1}+\frac{s^{2} t}{2} \mathrm{c}_{\mathrm{n}+1}$
$\leq \mathrm{s}\left(1+\mathrm{st}+\frac{t}{2}\right) \mathrm{c}_{\mathrm{n}+1}$
Case $5: d(P k, q) \leq \operatorname{sc}_{n+1}+\frac{s t}{2}\left[d(P k, q)+d\left(y_{2 n+2}, y_{2 n+1}\right)\right.$

$$
\leq \operatorname{sc}_{n+1}+\frac{\mathrm{st}}{2}[(\mathrm{Pk}, \mathrm{q})]+\frac{\mathrm{st}}{2}\left[\operatorname{sd}\left(\mathrm{y}_{2 n+2}, \mathrm{q}\right)+\operatorname{sd}\left(\mathrm{q}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right]
$$

$\left(1-\frac{s t}{2}\right) \mathrm{d}(\mathrm{Pk}, \mathrm{q}) \leq \mathrm{sc}_{\mathrm{n}+1}+\frac{s^{2} t}{2} \mathrm{c}_{\mathrm{n}+1}+\frac{s^{2} t}{2} \mathrm{c}_{\mathrm{n}+1}$
$\mathrm{d}(\mathrm{Pk}, \mathrm{q}) \leq s\left(\frac{1+s t}{1-\frac{s t}{2}}\right) \mathrm{c}_{\mathrm{n}+1}$

Case 6: $d(P k, q) \leq \operatorname{sc}_{n+1}+\frac{s t}{2}\left[d\left(P k, y_{2 n+1}\right)+d\left(y_{2 n+2}, q\right)\right]$
$d(P k, q) \leq \operatorname{sc}_{n+1}+\frac{s t}{2}\left[s d(P k, q)+\operatorname{sd}\left(q, y_{2 n+1}\right)\right]+\frac{\text { st }}{2} c_{n+1}$

$$
\left(1-\frac{s^{2} t}{2}\right) \mathrm{d}(\mathrm{Pk}, \mathrm{q}) \leq \mathrm{s}\left(\frac{1+\frac{t}{2}+\frac{s t}{2}}{1-\frac{s^{2} t}{2}}\right) \mathrm{c}_{\mathrm{n}+1}
$$

Since the infimum of the sequences on the right hand side are zero, therefore $\mathrm{d}(\mathrm{Pk}, \mathrm{q})=0$, that is Pk $=\mathrm{q}$. Therefore $\mathrm{Pk}=\mathrm{Rk}=\mathrm{q}$, i.e. n is a point of coincidence of mappings P and R . Thus k is a coincidence point of mappings P and R .
Now it remains to prove that q is a unique point of coincidence of pairs $\{P, R\}$ and $\{Q, R\}$.
Let q^{\prime} be also a point of coincidence of these three mappings, then $\mathrm{Pk}^{\prime}=\mathrm{Qk}^{\prime}=\mathrm{Tk}^{\prime}=\mathrm{q}^{\prime}$,
for $\mathrm{k}^{\prime} \in \mathrm{X}$, we have,
$\mathrm{d}\left(\mathrm{q}, \mathrm{q}^{\prime}\right)=\mathrm{d}\left(\mathrm{Pk}, \mathrm{Qk}^{\prime}\right) \leq \mathrm{tM}_{\mathrm{k}, \mathrm{k}^{\prime}}(\mathrm{P}, \mathrm{Q}, \mathrm{R})$
where $\quad M_{k, k^{\prime}}(P, Q, R) \in\left\{\frac{1}{2}\left[d\left(R k, R k^{\prime}\right)+d(P k, R k)\right], \frac{1}{2}\left[d\left(R k, R k^{\prime}\right)+d\left(P k, R k^{\prime}\right)\right]\right.$,

$$
\begin{aligned}
& \frac{1}{2}\left[\mathrm{~d}\left(\mathrm{Rk}, R \mathrm{k}^{\prime}\right)+\mathrm{d}\left(\mathrm{Qk}^{\prime}, \mathrm{Rk}\right)\right], \frac{1}{2}\left[\mathrm{~d}\left(\mathrm{Rk}, \mathrm{Rk}^{\prime}\right)+\mathrm{d}\left(\mathrm{Qk}^{\prime}, R \mathrm{Rk}^{\prime}\right)\right], \frac{1}{2}\left[\mathrm{~d}(\mathrm{Pk}, \mathrm{Rk})+\mathrm{d}\left(\mathrm{Qk}^{\prime}, R k^{\prime}\right)\right] \\
& \left.\frac{1}{2}\left[\mathrm{~d}\left(\mathrm{Pk}, R k^{\prime}\right)+\mathrm{d}\left(\mathrm{Qk}^{\prime}, \mathrm{Rk}\right)\right]\right\} \\
& \quad=\left\{0, \mathrm{~d}\left(\mathrm{q}, \mathrm{q}^{\prime}\right)\right\}
\end{aligned}
$$

Hence $d\left(q, q^{\prime}\right)=0$ i.e. $q=q^{\prime}$
If $\{P, R\}$ and $\{Q, R\}$ are weakly compatible, then q is a unique common fixed point of P, Q and R.

3.RESULTS AND DISCUSSION

In 2016, Rad and Altun ${ }^{15}$ proved some common fixed point results for three mappings on vector metric spaces. They proved the following results:

THEOREM 3.1 :Let X be a vector metric space with E-Archimedean. Suppose the mappings $\mathrm{f}, \mathrm{g}, \mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ satisfy the following conditions :
(i) for all $x, y \in X, d(f x, g y) \leq k u_{x, y}(f, g, T)$
where $\mathrm{k} \in(0,1)$ is a constant and
$u_{x, y}(f, g, T) \in\left\{d(T x, T y), d(f x, T x), d(g y, T y), \frac{1}{2}[d(f x, T y)+d(g y, T x)](\right.$
(ii) $\quad f(X) \cup g(X) \subseteq T(X)$
(iii) one of $f(X), g(X)$ or $T(X)$ isaE-complete subspace of X.

Then $\{\mathrm{f}, \mathrm{T}\}$ and $\{\mathrm{g}, \mathrm{T}\}$ have a unique point of coincidence in X . Moreover, if $\{\mathrm{f}, \mathrm{T}\}$ and $\{\mathrm{g}, \mathrm{T}\}$ are weakly compatible, then f, g and T have a unique common fixed point in X where $\mathrm{k} \in(0,1]$.
$u_{x, y}(f, g) \in\{d(f x, g y), d(f x, g x), d(f y, g y), d(f x, g y), d(f y, g x)\}$
(ii) $f(X) \subseteq T(X)$
(iii) one of $f(X)$ or $T(X)$ isaE-complete subspace of X.

Then $\{f, T\}$ have a unique point of coincidence in X. Moreover, if $\{f, T\}$ are weakly compatible, then f and T have a unique common fixed point in X .

In 2017, Latpate ${ }^{1}$ proved the results for three mappings on complete metric spaces. He proved the following result:

Let (X, d) be a complete Metric space and Let A be a nonempty closed subset of X.
Let $\mathrm{P}, \mathrm{Q}: \mathrm{A} \rightarrow \mathrm{A}$ be such that
$\mathrm{d}\left(\mathrm{P}_{\mathrm{x}}, \mathrm{Q}_{\mathrm{y}}\right) \leq \frac{1}{2}\left[\mathrm{~d}\left(\mathrm{R}_{\mathrm{x}}, \mathrm{Q}_{\mathrm{y}}\right)+\mathrm{d}\left(\mathrm{R}_{\mathrm{y}}, \mathrm{P}_{\mathrm{x}}\right)+\mathrm{d}\left(\mathrm{S}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)\right]-\psi\left[\mathrm{d}\left(\mathrm{R}_{\mathrm{x}}, \mathrm{Q}_{\mathrm{y}}\right)+\mathrm{d}\left(\mathrm{R}_{\mathrm{y}}, \mathrm{P}_{\mathrm{x}}\right)\right]$
For any $(\mathrm{x}, \mathrm{y}) \in \mathrm{X} \times \mathrm{X}$, where a function $\psi:[0, \infty)^{2} \rightarrow[0, \infty)$ is continuous and $\psi(\mathrm{x}, \mathrm{y})=0$ iff $\mathrm{x}=\mathrm{y}=$ 0 and $\mathrm{R}: \mathrm{A} \rightarrow$ Xwhich satisfies the following condition.
(i) $\mathrm{PA} \subseteq \mathrm{RA}$ and $\mathrm{QA} \subseteq \mathrm{RA}$
(ii) The pair of mappings (P, R) and (Q, R) are weakly compatible.
(iii) $R(A)$ is closed subset of X.

Then P, R and Q have unique common fixed point.
Motivated by their results, we have proved similar results for three mappings on E-b-metric spaces.

Further, these results can be investigated for four and six mappings on E-b-metric space.

ACKNOWLEDGEMENTS

We are thankful for thereferees for valuable suggestions.

REFERENCES

1. Latpate, VV, Dolhare, UP, common fixed point theorem of three mappings in complete metric spaces, Int. J. Appl. Pure Sci. Agriculture, 2017 ; 03:1-6.
2. Abbas M, Rhoades and NaigrT,Common fixed point results for four maps in cone metric spaces, Appl. Math. Comput. Anal., 2010; 2161: 80-86.
3. ArshadM, Azam, A. and VetroP., Some common fixed point results in cone metric spaces, Fixed Point Theory Appl., 2009; Article ID 493965 .
4. Jungck G, Common fixed point for commuting and compatible maps on compacta, Proc. Am. Math. Soc., 1988; 103: 977-983.
5. Rahimi H, Vetro Pand Soleimani RadG ,Some common fixed point results for weakly compatible mappings in cone metric type space, Miskolc Math. Notes., 2013; 14(1): 233-243.
6. AltunI,Cevik C, Some common fixed point theorems in vector metric spaces, Filomat, 2011;25(1):105-113.
7. PetreIR, Fixed point theorems in E-b-metric spaces, J. Non linear Sci. Appl. 2014; 07: 264271.
8. Cevik C, Altun I, Vector metric spaces and some properties, Topol. Met. Nonlin. Anal., 2009; 34(2): 375-382.
9. Aliprantis CD, Border KC, Infinite Dimensional Analysis, Springer-Verlag, Berling, 1999.
10. Luxemburg WAJ, Zannen AC, Riesz Spaces, North-Holland Publishing Company, Amsterdam 1971.
11. Kir M. Kiziltunc H. On some well known fixed point theorems in b-metric spaces, Turkish J. Anal. Number Theory,2013; 01: 13-16.
12. Mishra PK, Sachdeva Sand Banerjee SK. Some fixed point theorems in b-metric space, Turkish J. Anal. Number Theory, 2014; 2: 19-22.
13. Rahimi H,Rohades E., Fixed point theorems for weakly compatible mappings in cone metric type space, Miskolc Math. Notes. 2013;14(1): 233-243.
14. Abbas M,Jungck G ,Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 2008; 341: 416-470.
15. Rad, G. S., Altun, I, Common fixed point results on vector metric spaces, J. Linear Topol. Algebra, 2016; 05: 29-39.

[^0]: *Corresponding author
 Dr MamtaKamra
 Associate Professor\& Chairperson
 Department of Mathematics
 Indira Gandhi University, Meerpur (Rewari)-122502
 Haryana, India
 Email: Mkhaneja15@gmail.com
 Mob. No: 9416882322

