

Research article

Available online www.ijsrr.org

International Journal of Scientific Research and Reviews

Some common fixed point theorems for three mappings in Vector bmetric spaces

¹Mamta karma and Kumari Sarita

^{1,2}Department of Mathematics Indira Gandhi University, Meerpur, 122502, (Rewari) Haryana, India

ABSTRACT

In this paper we prove some common fixed point results for three mappings in vector bmetric space. Our results extend and improve some well-known results in literature. We also give an example to justify our results.

KEYWORDS: b-metric space, contraction mapping theorem, vector b-metric space, Rieszspace, weakly compatible.

*Corresponding author

Dr MamtaKamra

Associate Professor& Chairperson

Department of Mathematics

Indira Gandhi University, Meerpur (Rewari)-122502

Haryana, India

Email: Mkhaneja15@gmail.com

Mob. No: 9416882322

ISSN: 2279-0543

1. INTRODUCTION

Common fixed point theorems for three mappings in metric space were studied by Latpate et al¹Similar results can be seen in Abbas et al², Arshad et al³,

Jungck⁴ and Rahimi et al⁵. Further ,these results were extended for vector metric space by Altun and Cevik⁶. We extend some of the results of fixed point for three mappings defined on vector b-metric space which is aRiesz space valued metric space. Vector b-metric space was defined by Petre⁷ in 2014 by defining b-metric on vector metric space. We recall the basic concepts and definitions introduced by Altun and Cevik⁸ and Petre⁷.

We follow notions and terminology by AliprantisandBorder ⁹, Luxemburg andZannen¹⁰ for Riesz spaces.

A partially ordered set (E, \le) is a lattice if each pair of elements has a supremum and infimum. A real linear space E with an order relation \le on E which is compatible with the algebraic structure of E is called an ordered linear space. Riesz space is an ordered vector space and at the same time a lattice also. Let E be a Riesz space with the positive cone

 $E_+ = \{x \in E : x \ge 0\}$. For an element $x \in E$, the absolute value |x|, the positive part x^+ , the negative part x^- are defined as $|x| = x \ v(-x)$, $x^+ = x \lor 0$, $x^- = (-x) \lor 0$ respectively.

If every non–empty subset of E which is bounded above has a supremum, then E is called Dedekind complete or order complete. The Riesz space E is said to be Archimedean if $\frac{1}{n}a\downarrow 0$ holds for every $a\in E_+$.

A sequence (b_n) is said to be order Cauchy (o-Cauchy) if there exists a sequence (a_n) in E such that $a_n \downarrow 0$ and $|b_n - b_{n+p}| \le a_n$ holds for all n and p.

A Riesz space E is said to be o-Cauchy complete if every o-Cauchy sequence is o-convergent.

DEFINITION 1.1[10] :Let X be a non-empty set and E be a Riesz space. Then function $d: X \times X \rightarrow E$ is said to be a vector metric (or E-metric) if it satisfies the following properties:

- (a) d(x, y) = 0 if and only if x = y
- (b) $d(x, y) \le d(x, z) + d(y, z)$ for all $x, y, z \in X$.

Also the triple (X, d, E) is said to be a vector metric space. Vector metric space is generalization of metric space. For arbitrary elements x, y, z, w of a vector metric space, the following statements are satisfied:

(i)
$$0 \le d(x, y)$$
 (ii) $d(x, y) = d(y, x)$

(iii)
$$|d(x, z) - d(y, z)| \le d(x, y)$$

(iv)
$$|d(x, z) - d(y, w)| \le d(x, y) + d(z, w)$$

A sequence (x_n) in a vector metric space (X, d, E) vectorial converges (E-converges) to some $x \in E$, written as $x_n \xrightarrow{d.E} x$ if there is a sequence (a_n) in E satisfying $a_n \downarrow 0$ and $d(x_n, x) \leq a_n$ for all n.

A sequence (x_n) is called E-cauchy sequence whenever there exists a sequence (a_n) in E such that $a_n \downarrow 0$ and $d(x_n, x_{n+p}) \le a_n$ holds for all n and p.

A vector metric space X is called E-complete if each E-cauchy sequence in X, E converges to a limit in X.

For more detailed discussion regarding vector metric spaces we refer to ^{6,8}.

When E = R, the concepts of vectorial convergence and metric convergence, E-cauchy sequence and Cauchy sequence in metric are same.

When also X = E and d is the absolute valued vector metric on X, then the concept of vectorial convergence and convergence in order are the same.

DEFINITION 1.2:Let X be a non–empty set and let $s \ge 1$ be a given real number. A function d :

 $X \times X \rightarrow R^+$ is called a b-metric provided that, for all x, y, z $\in X$

- (i) d(x, y) = 0 if and only if x = y
- (ii) d(x, y) = d(y, x)
- (iii) $d(x, z) \le s[d(y, x) + d(y, z)]$

A pair (X, d) is called a b-metric space. It is clear from definition that b-metric space is an extension of usual metric space.

Several authors have investigated fixed point theorems on b-metric spaces, one can see 11, 12.

Petre⁷ defined E-b-metric space or vector b-metric space as follows:

DEFINITION 1.3 [7]:Let X be a nonempty set and $s \ge 1$, A functional $d: X \times X \to E_+$ is called an E-b-metric if for any $x, y, z \in X$, the following conditions are satisfied:

- (a) d(x, y) = 0 if and only if x = y
- (b) d(x, y) = d(y, x)
- (c) $d(x, z) \le s[d(x, y) + d(y, z)]$

The triple (X, d, E) is called E-b-metric space.

EXAMPLE 1.4: Let d: $[0,1] \times [0,1] \rightarrow \mathbb{R}^2$ defined by $d(x,y) = (\alpha |x-y|^2, \beta |x-y|^2)$ then (X,d,\mathbb{R}^2) is E-b-metric space where $\alpha,\beta > 0$.

DEFINITION 1.5[13]: Let A and B be self maps of a set X if y = Ax = Bx for some $x \in X$, then y is said to be a point of coincidence and x is said to be a coincidence point of A and B. A pair of maps A and B is called weakly compatible pair if they commute at coincidence points^{8, 11}.

LEMMA 1.6 [13]: If E is a Riesz space and $a \le ka$ where $a \in E_+$ and $k \in [0,1)$ then a = 0.

LEMMA 1.7 [14]: Let P and Q are weakly compatible self-maps on a set Y. If P and Q have a unique point of coincidence c = Pc = Qc, then c is the unique common fixed point of P and Q.

2. MAIN RESULTS: In this section, we prove some fixed point theorems for three mappings in vector b-metric space. Kir and Kiziltunc¹²have investigated common fixed point theorems for weakly compatible pairs for b-metric space, whereas these results on vector metric spaces have been investigated by Rad and Altun¹⁵

THEOREM 2.1:Let X be E-b-metric space with E-Archimedean. Suppose the mappings $P,Q,R: X \rightarrow X$ satisfy the following conditions:

(i) for all
$$x, y \in X$$
, $d(Px, Qy) \le tM_{x,y}(P, Q, R)$ (1)

where
$$t < \frac{1}{s(s+1)}$$
 and

$$M_{x,y}(P,Q,R) \in \{d(Rx, Ry), d(Px, Rx), d(Qy, Ry), d(Px, Ry), d(Qy, Rx)\}$$
 (2)

- (ii) $P(X) \cup Q(X) \subseteq R(X)$
- (iii) R(X) is an E-complete subspace of X.

Then $\{P,R\}$ and $\{Q,R\}$ have a unique point of coincidence in X. Moreover, if $\{P,R\}$ and $\{Q,R\}$ are weakly compatible, then P,Q and R have a unique fixed point in X.

PROOF: Let x_0 be arbitrary point of X. Since $P(X) \subset R(X)$ there exists $x_1 \in X$ such that $P(x_0) = Rx_1 = y_1$.

Since $Q(X) \subset R(X)$ there exists $x_2 \in X$ such that $Q(x_1) = Rx_2 = y_2$.

Continue in this manner, then there exists $x_{2n+1} \in X$ such that $P(x_{2n}) = Rx_{2n+1} = y_{2n+1}$.

there exists $x_{2n+2} \in X$ such that $Q(x_{2n+1}) = Rx_{2n+2} = y_{2n+2}$, for n = 0,1,2,3...

Firstly, show that

$$d(y_{2n+1}, y_{2n+2}) \le \beta d(y_{2n}, y_{2n+1})$$
 for all n where $\beta < 1$ (3)

From (1), we have :

$$d(y_{2n+1},y_{2n+2}) \; = \; d(Px_{2n},\,Qx_{2n+1}) \; \leq \; t M_{x_{2n},x_{2n+1}}(P,\,Q,\,R) \; \text{for } n = 0,1,2,3\dots.$$

Since
$$M_{x_{2n},x_{2n+1}}(P,Q,R) \in \{d(Rx_{2n}, Rx_{2n+1}), d(Px_{2n}, Rx_{2n}), d(Qx_{2n+1}, Rx_{2n+1}), d(Px_{2n}, Rx_{2n+1}), d(Qx_{2n+1}, Rx_{2n})\}$$

$$= \{d(y_{2n},\,y_{2n+1}),\,d(y_{2n+1},\,y_{2n}),\,d(y_{2n+2},\,y_{2n+1}),\,d(y_{2n+1},\,y_{2n+1}),\,d(y_{2n+2},\,y_{2n})\}$$

= {
$$d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n+2}), d(y_{2n}, y_{2n+2}),$$
}

If $M_{x_{2n},x_{2n+1}}(P,Q,R) = d(y_{2n}, y_{2n+1})$, then clearly (3) holds.

If
$$M_{x_{2n},x_{2n+1}}(P,Q,R) = d(y_{2n+1}, y_{2n+2})$$
, then according to lemma 1.6

 $d(y_{2n+1}, y_{2n+2}) = 0$, and clearly (3) holds.

Finally, suppose that
$$M_{x_{2n},x_{2n+1}}(P,Q,R) = d(y_{2n}, y_{2n+2}),$$

Then, we have

$$d(y_{2n+1}, y_{2n+2}) \le td(y_{2n}, y_{2n+2}) \le ts[d(y_{2n}, y_{2n+1}) + d(y_{2n+1}, y_{2n+2})]$$

$$(1\text{-ts})\ d(y_{2n+1},y_{2n+2}) \leq tsd(y_{2n},y_{2n+1})$$

$$\leq \left(\frac{ts}{1-ts}\right) \left[d(y_{2n},y_{2n+1})\right]$$

=
$$\beta$$
 d(y_{2n},y_{2n+1}), where $\beta = \left(\frac{ts}{1-ts}\right)$

Thus
$$d(y_n, y_{n+1}) \le \beta^n d(y_0, y_1)$$
,

where
$$\beta \in \left\{ t, \frac{ts}{1 - ts} \right\}$$

Therefore for all n and p,

$$\begin{split} d(y_n, y_{n+p}) & \leq \ s \ d(y_n, y_{n+1}) + s^2 \ d(y_{n+1}, y_{n+2}) + s^3 \ d(y_{n+2}, y_{n+3}) + \ldots + s^p d(y_{n+p-1}, y_{n+p}) \\ & \leq s \ \beta^n \ d(y_0, y_1) + s^2 \ \beta^{n+1} \ d(y_0, y_1) + \ldots + s^p \beta^{n+p-1} \ d(y_0, y_1) \\ & = s \beta^n \bigg(\frac{1 - (s\beta)^p}{1 - s\beta} \bigg) \ d(y_0, y_1) \\ & \leq \bigg(\frac{s\beta^n}{1 - s\beta} \bigg) \ d(y_0, y_1) \end{split}$$

Since E is Archimedean, then (y_n) is E-Cauchy sequence. Suppose that R(X) is E-complete, there exists a $p \in R(X)$ such that

$$Rx_{2n} = y_{2n} \xrightarrow{\quad d.E. \quad} p \ \ \text{and} \ Rx_{2n+1} = y_{2n+1} \xrightarrow{\quad d.E. \quad} p$$

Hence there exists a sequence (c_n) in E such that $c_n \downarrow 0$ and $d(Rx_{2n},p) \leq c_n$,

 $d(Rx_{2n+1}, p) \le c_{n+1}$. Since $p \in R(X)$, there exists $k \in X$ such that Rk = p. Now we prove that Qk = p For this, consider

$$d(p,Qk) \le sd(p, Px_{2n}) + sd(Px_{2n},Qk)$$

$$\leq \ sc_{n+1} + stM_{x_{2n},k}(P,Q,R)$$

where
$$M_{x_{2n},k}(P,Q,R) \in \{d(Rx_{2n},R_k),d(Px_{2n},Rx_{2n}),\,d(Qk,Rk),\,d(Px_{2n},Rk),\,d(Qk,Rx_{2n})\}$$

=
$$\{d(y_{2n}, p), d(y_{2n+1}, y_{2n}), d(Qk, p), d(y_{2n+1}, p), d(Qk, y_{2n})\}$$
 for all n.

There are five possibilities:

Case 1:
$$d(p, Qk) \le sc_{n+1} + st \ d(y_{2n}, p) \le sc_{n+1} + stc_n \le s(t+1) \ c_n$$
.

Case 2:
$$d(p, Qk) \le sc_{n+1} + st \ d(y_{2n+1}, y_{2n}) \le sc_{n+1} + st \ [sd(y_{2n+1}, p) + sd(p, y_{2n})]$$

$$\leq sc_{n+1} + st[sc_{n+1} + sc_n] \leq s(2st+1) \; c_n.$$

Case 3:
$$d(p, Qk) \le sc_{n+1} + std(p,Qk)$$

$$(1 - st)d(p, Qk) \le sc_{n+1}$$

$$d(p, Qk) \le \left(\frac{s}{1-st}\right)c_{n+1}$$

Case 4:
$$d(p, Qk) \le sc_{n+1} + st d(y_{2n+1}, p)$$

$$\leq sc_{n+1} + stc_{n+1} \leq s(t+1) c_n.$$

Case 5 :
$$d(p, Qk) \le sc_{n+1} + std(Qk, y_{2n})$$

$$\leq sc_{n+1} + st[sd(Qk,p) + sd(p,y_{2n})]$$

$$(1 - s^2t) d(p, Qk) \le sc_{n+1} + s^2td(p, y_{2n})$$

$$(1-s^2t) d(p, Qk) \le sc_{n+1} + s^2tc_n$$

$$d(p, Qk) \le \left(\frac{s(1+st)}{1-s^2t}\right)c_n$$

Since the infimum of the sequences on the right hand side are zero, then d(p,Qk) = 0, that is Qk = p. Therefore Qk = Rk = p, i.e. p is a point of coincidence of mappings Q, R and k is a coincidence point of mappings Q and R.

Now we show that Pk = p, consider

$$d(Pk,p) \leq sd(Pk,\,Qx_{2n+1}) + sd(Qx_{2n+1},p) \, \leq \, sc_{n+1} + st {\textstyle M_{X_{k},2n+1}}(P,Q,R)$$

where
$$M_{x_{k},2n+1}(P,Q,R) \in \{d(Rk,Rx_{2n+1}),d(Pk,Rk),d(Qx_{2n+1},Rx_{2n+1}),d(Pk,Rx_{2n+1$$

$$d(Qx_{2n+1}, Rk)$$

=
$$\{d(p,y_{2n+1}), d(Pk, p), d(y_{2n+2}, y_{2n+1}), d(Pk,y_{2n+1}), d(Qx_{2n+1},p)\}$$
 for all n.

There are five possibilities:

Case 1:
$$d(Pk, p) \le sc_{n+1} + std(p, y_{2n+1}) \le sc_{n+1} + stc_{n+1} \le s(t+1) c_n$$
.

Case 2:
$$d(Pk,p) \le sc_{n+1} + std(Pk,p)$$

$$(1-st) d(Pk, p) \leq sc_{n+1}$$

$$d(Pk,p) \le \left(\frac{s}{1-st}\right)c_{n+1}$$

$$\begin{split} \text{Case 3: } d(Pk,p) &\leq \ sc_{n+1} + std(y_{2n+2}, \, y_{2n+1}) \ \leq \ sc_{n+1} + st[sd(y_{2n+2}, \, p) + sd(p, y_{2n+1})] \\ d(Pk,p) &\leq sc_{n+1} + st[sc_{n+2} + sc_{n+1}] \\ d(Pk,p) &\leq sc_{n+1} + s^2tsc_{n+1} \leq s(st+1) \ c_{n+1}. \\ \text{Case 4: } d(Pk, \, p) &\leq sc_{n+1} + std(Pk, y_{2n+1}) \end{split}$$

$$\leq sc_{n+1} + st[sd(Pk,p) + sd(p,y_{2n+1})] \leq sc_{n+1} + s^2td(Pk,p) + s^2tc_{n+1}$$

$$(1-s^2t)d(Pk, p) \le s(1+st) c_{n+1}.$$

$$d(Pk,p) \le \left(\frac{s(1+st)}{(1-s^2t)}\right)c_{n+1}$$

Case 5:
$$d(Pk,p) \le sc_{n+1} + std(Qx_{2n+1}, p)$$

$$\leq sc_{n+1} + stc_{n+1} \leq s(1+t)c_{n+1}$$

Since the infimum of these quences on the right hand side are zero, then d(Pk,p) = 0, that is Pk = p. Therefore Pk = Rk = p, i.e. p is a point of coincidence of mappings P, R and k is a coincidence point of mappings P and R.

Now it remains to prove that p is a unique point of coincidence of pairs {P,R} and {Q,R}.

Let p' be also a point of coincidence of these three mappings, then Pk' = Qk' = Rk' = p',

for $k' \in X$, we have,

$$d(p, p') = d(Pk, Qk') \le tM_{k,k'}(P,Q,R)$$

where
$$M_{k,k'}(P,Q,R) \in \{d(Rk, Rk'), d(Pk,Rk), d(Qk',Rk'), d(Pk, Rk'), d(Qk',Rk)\}$$

$$= \{0, d(p,p')\}$$

If {P,R} and {Q,R} are weakly compatible, then p is a unique common fixed point of P,Q and R.

COROLLARY 2.2: Let X be E-b-metric space with E Archimedean. Suppose the mappingsP,R:

 $X \rightarrow X$ satisfy the following conditions:

(i) for all
$$x, y \in X$$
, $d(Px, Py) \le tM_{x,y}(P, R)$ (4)

where
$$t < \frac{1}{s(s+1)}$$

$$M_{x,y}(P,R) \in \{d(Rx,\,Ry),\,d(Px,\,Rx),\,d(Py,\,Ry),\,d(Px,\,Ry)\,\,,d(Py,\,Rx)\} \quad (5)$$

- (ii) $P(X) \subseteq R(X)$
- (iii) R(X) is E-complete subspace of X.

Then $\{P,R\}$ have a unique point of coincidence in X. Moreover, if $\{P,R\}$ are weakly compatible, then they have a unique fixed point in X.

EXAMPLIE 2.3 :Let $E=R^2$ with coordinatewise ordering defined by $(x_1,y_1) \le (x_2,y_2)$ if and only if $x_1 \le x_2$ and $y_1 \le y_2$, X = R and $d(x, y) = (|x-y|^2, c|x-y|^2)$ with c > 0.

Define the mappings $Px = x^2 + 3$, $Rx = 2x^2$.

For all $x, y \in X$, we have

$$d(Px, Py) = \frac{1}{2} d(Rx, Ry) \le tM_{x,y}(P,R)$$

with
$$M_{x,y}(P, R) = d(Rx, Ry)$$
 for $k \in \left[\frac{1}{2}, 1\right]$.

Moreover, $P(X) = [3, \infty) \subset [0, \infty) = R(X)$.

THEOREM 2.4:Let X be E-b-metric space with E Archimedean. Suppose the mappings P,Q,R:

 $X \rightarrow X$ satisfy the following conditions:

(i) for all
$$x, y \in X$$
, $d(Px,Qy) \le tM_{x,y}(P,Q,R)$ (6)

where $t < \frac{2}{s(s+2)}$ and

$$M_{x,y}(P,Q,R) \in \{\, \frac{1}{2} \, [d(Rx,\,Ry) + d(Px,\,Rx)], \, \frac{1}{2} \, [d(Rx,\,Ry) + d(Px,\,Ry)], \, \frac{1}{2} \, [d(Rx,\,Ry) + d(Qy,\,Rx)], \, \frac{1}{2} \, [d(Rx,\,Ry) + d(Q$$

$$\frac{1}{2} \left[d(Rx, Ry) + d(Qy, Ry) \right], \ \frac{1}{2} \left[d(Px, Rx) + d(Qy, Ry) \right], \ \frac{1}{2} \left[d(Px, Ry) + d(Qy, Ry) \right]$$

$$d(Qy, Rx)]\} (7)$$

- (ii) $P(X) \cup Q(X) \subset R(X)$
- (iii) R(X) is an E-complete subspace of X.

Then {P,R} and {Q,R} have a unique common point of coincidence in X. Moreover, if

{P,R} and {Q,R} are weakly compatible, then they have a unique fixed point in X.

PROOF: We define the sequence $\{x_n\}$ and $\{y_n\}$ as in proof of theorem 2.1

Firstly, show that

$$d(y_{2n+1}, y_{2n+2}) \le \beta d(y_{2n}, y_{2n+1}) \text{ for all } n.$$
(8)

From (6), we have:

$$d(y_{2n+1},\,y_{2n+2}) = d(Px_{2n},\,Qx_{2n+1}) \leq t M_{x_{2n},x_{2n+1}}(P,\,Q,\,R) \text{ for } n = 0,1,2,3\dots...$$

Since

$$\mathsf{M}_{x_{2n},x_{2n+1}}(P,\ Q,\ R) \in \{\, \frac{1}{2} \, [\, d(Rx_{2n},\ Rx_{2n+1}) + d(Px_{2n},\ Rx_{2n})\,], \\ \frac{1}{2} \, [\, d(Rx_{2n},\ Rx_{2n+1}) \, + \, d(Px_{2n},\ Rx_{2n+1})\,], \\ \frac{1}{2} \, [\, d(Rx_{2n},\ Rx_{2n+1}) \, + \, d(Px_{2n},\ Rx_{2n+1})\,], \\ \frac{1}{2} \, [\, d(Rx_{2n},\ Rx_{2n+1}) \, + \, d(Px_{2n},\ Rx_{2n+1}) \, + \, d(Px_{2n},\ Rx_{2n+1})\,], \\ \frac{1}{2} \, [\, d(Rx_{2n},\ Rx_{2n+1}) \, + \, d(Px_{2n},\ Rx_{2n+1}) \, + \, d(Px_{2$$

$$[d(Rx_{2n}, Rx_{2n+1}) + d(Qx_{2n+1}, Rx_{2n})], \frac{1}{2} [d(Rx_{2n}, Rx_{2n+1}) + d(Qx_{2n+1}, Rx_{2n+1})],$$

$$\frac{1}{2}\left[d(Px_{2n},\,Rx_{2n})\,+d(Qx_{2n+1},\,Rx_{2n+1})\right],\,\,\frac{1}{2}\left[d(Px_{2n},\,Rx_{2n+1})\,+\,d(Qx_{2n+1},\,Rx_{2n})\right]\}$$

$$= \{ \frac{1}{2} \left[d(y_{2n}, \ y_{2n+1}) \ + \ d(y_{2n+1}, \ y_{2n}) \right], \ \frac{1}{2} \left[d(y_{2n}, \ y_{2n+1}) \ + \ d(y_{2n+1}, \ y_{2n+1}) \right], \frac{1}{2} \left[d(y_{2n}, \ y_{2n+1}) \ + \ d(y_{2n+2}, \ y_{2n+1}) \right], \frac{1}{2} \left[d(y_{2n}, \ y_{2n+1}) \ + \ d(y_{2n+2}, \ y_{2n+1}) \right], \frac{1}{2} \left[d(y_{2n}, \ y_{2n+1}) \ + \ d(y_{2n+2}, \ y_{2n+1}) \right], \frac{1}{2} \left[d(y_{2n}, \ y_{2n+1}) \ + \ d(y_{2n+2}, \ y_{2n+1}) \right]$$

$$y_{2n})], \ \frac{1}{2} \left[d(y_{2n}, \, y_{2n+1}) + d(y_{2n+2}, \, y_{2n+1})\right], \ \frac{1}{2} \left[d(y_{2n+1}, \, y_{2n}) + d(y_{2n+2}, \, y_{2n+1})\right],$$

$$\frac{1}{2}\left[d(y_{2n+1},\,y_{2n+1})+d(y_{2n+2},\,y_{2n})\right]\}$$

$$=\{d(y_{2n},\,y_{2n+1}),\,\,\frac{1}{2}\,[d(y_{2n},\,y_{2n+1})],\,\,\frac{1}{2}\,[d(y_{2n},\,y_{2n+1})+d(y_{2n+2},\,y_{2n})],\,\,\frac{1}{2}\,[d(y_{2n},\,y_{2n+2})+d(y_{2n+2},\,y_{2n})+d(y_{2n+2},\,y_{2n})],\,\,\frac{1}{2}\,[d(y_{2n},\,y_{2n+2})+d(y_{2n+2},\,y_{2n})+d(y_{2n+2},\,y_{2n})]$$

$$d(y_{2n+2}, y_{2n+1})], \frac{1}{2} [d(y_{2n}, y_{2n+2})]\}$$

$$\text{If } M_{x_{2n},x_{2n+1}}(P,Q,R) = d(y_{2n},\ y_{2n+1}) \text{ or } \frac{1}{2} \left[d(y_{2n},\ y_{2n+1}) \right] \text{ then clearly (8) holds.}$$

$$\label{eq:mass_eq} \text{If } M_{x_{2n},x_{2n+1}}(P,Q,R) = \frac{1}{2} \left[d(y_{2n},\,y_{2n+1}) + d(y_{2n+2},\,y_{2n}) \right]$$

Then
$$d(y_{2n+1}, y_{2n+2}) \le \frac{t}{2} [d(y_{2n}, y_{2n+1})] + \frac{t}{2} [d(y_{2n+2}, y_{2n})]$$

$$\leq \frac{t}{2} \left[d(y_{2n}, y_{2n+1}) \right] + \frac{t}{2} \left[sd(y_{2n+2}, y_{2n+1}) + sd(y_{2n+1}, y_{2n}) \right]$$

$$\left(1 - \frac{st}{2}\right) d(y_{2n+1}, y_{2n+2}) \le \left(1 + s\right) \frac{t}{2} \left[d(y_{2n}, y_{2n+1})\right]$$

$$d(y_{2n+1},\,y_{2n+2}) \leq \frac{t}{2} \left(\frac{1+s}{1-\frac{st}{2}}\right) [d(y_{2n},\,y_{2n+1})] \; \leq \; \beta' \; [d(y_{2n},\,y_{2n+1})], \quad \text{ where } \; \beta' = \frac{t}{2} \left(\frac{1+s}{1-\frac{st}{2}}\right)$$

If
$$M_{x_{2n},x_{2n+1}}(P,Q,R) = \frac{1}{2} [d(y_{2n}, y_{2n+1}) + d(y_{2n+2}, y_{2n+1})]$$

Then
$$d(y_{2n+1}, y_{2n+2}) \le \frac{t}{2} [d(y_{2n}, y_{2n+1})] + \frac{t}{2} [d(y_{2n+2}, y_{2n+1})]$$

$$\left(1 - \frac{t}{2}\right) d(y_{2n+1}, y_{2n+2}) \le \frac{t}{2} \left[d(y_{2n}, y_{2n+1})\right]$$

$$d(y_{2n+1}, y_{2n+2}) \leq \left(\frac{\frac{t}{2}}{1 - \frac{t}{2}}\right) [d(y_{2n}, y_{2n+1})] \leq \beta'' [d(y_{2n}, y_{2n+1})], \quad \text{where } \beta'' = \left(\frac{\frac{t}{2}}{1 - \frac{t}{2}}\right)$$

If
$$M_{x_{2n},x_{2n+1}}(P,Q,R) = \frac{1}{2} [d(y_{2n}, y_{2n+2})]$$

Then
$$d(y_{2n+1}, y_{2n+2}) \le \frac{t}{2} \left[sd(y_{2n}, y_{2n+1}) + sd(y_{2n+1}, y_{2n+2}) \right]$$

$$d(y_{2n+1},\,y_{2n+2}) \leq \left(\frac{\frac{st}{2}}{1-\frac{st}{2}}\right) \left[d(y_{2n},\,y_{2n+1})\right] \leq \beta''' \left[d(y_{2n},\,y_{2n+1})\right], \quad \text{where } \beta''' = \left(\frac{\frac{st}{2}}{1-\frac{st}{2}}\right).$$

Therefore
$$d(y_n, y_{n+1}) \le (\beta''')^n d(y_0, y_1)$$
 (9)

By using (9), for all n and p, we have

$$\begin{split} d(y_n, y_{n+p}) & \leq s \ d(y_n, y_{n+1}) + s^2 \ d(y_{n+1}, y_{n+2}) + \dots + s^p d(y_{n+p-1}, y_{n+p}) \\ & \leq s \ (\beta^{\text{\tiny{III}}})^n \ d(y_0, y_1) \ + s^2 \ (\beta^{\text{\tiny{III}}})^{n+1} \ d(y_0, y_1) \ + \dots + s^{n+p} (\beta^{\text{\tiny{III}}})^{n+p-1} \ d(y_0, y_1) \\ & = s \Big(\beta^{\text{\tiny{III}}}\Big)^n \Bigg(\frac{1 - \Big(s\beta^{\text{\tiny{III}}}\Big)^p}{1 - \Big(s\beta^{\text{\tiny{III}}}\Big)} \Bigg) \ d(y_0, y_1) \leq \Bigg(\frac{s \Big(\beta^{\text{\tiny{III}}}\Big)^n}{1 - s\beta^{\text{\tiny{III}}}} \Bigg) d(y_0, y_1) \end{split}$$

Since E is Archimedean, then (y_n) is E-Cauchy sequence. Suppose that R(X) is E-complete, there exists a $q \in R(X)$ such that

$$Rx_{2n} = y_{2n} \xrightarrow{\quad d \cdot E \cdot \quad} q \ \text{ and } Rx_{2n+1} = y_{2n+1} \xrightarrow{\quad d \cdot E \cdot \quad} q$$

 $d(Rx_{2n+1},q) \le c_{n+1}$. Since $q \in R(X)$, there exists $k \in X$ such that Rk = q. Now we prove that Qk = q For this, consider

$$d(q,Qk) \le sd(q, Px_{2n}) + sd(Px_{2n},Qk) \le sc_{n+1} + stM_{X_{2n},k}(P,Q,R)$$

$$\text{where } M_{x_{2n},k}(P,\,Q,\,R) \in \, \{\, \frac{1}{2} \, [\, d(Rx_{2n},\,Rk) \, + \, d(Px_{2n},\,Rx_{2n})], \\ \frac{1}{2} \, [\, d(Rx_{2n},\,Rk) \, + \, d(Px_{2n},\,Rk)], \\ \frac{1}{2} \, [\, d(Rx_{2n},\,Rk) \, + \, d(Rx_{2n},\,Rk)], \\ \frac{1}{2} \, [\, d(Rx_{2n},\,Rk) \, + \, d(Rx_{2n},\,Rk)], \\ \frac{1}{2} \, [\, d(Rx_{2n},\,Rk) \, + \, d(Rx_$$

$$\frac{1}{2}\left[d(Rx_{2n},\ Rk)\ +\ d(Qk,\ Rx_{2n})\right], \\ \frac{1}{2}\left[d(Rx_{2n},\ Rk)\ +\ d(Qk,\ Rk)\right], \\ \frac{1}{2}\left[d(Px_{2n},\ Rx_{2n})\ +\ d(Qk,\ Rx_{2n})\ +\ d(Qk,\ Rx_{2n})\right], \\ \frac{1}{2}\left[d(Px_{2n},\ Rx_{2n})\ +\ d(Qk,\ Rx_{2n})\ +\ d(Qk,\ Rx_{2n})\right], \\ \frac{1}{2}\left[d(Px_{2n},\ Rx_{2n})\ +\ d(Qk,\ Rx_{2n})\ +\ d(Qk,\ Rx_{2n})\right], \\ \frac{1}{2}\left[d(Px_{2n},\ Rx_{2n})\ +\ d(Qk,\ Rx_{2n})\ +\ d(Qk,\ Rx_{2n})\ +\ d(Qk,\ Rx_{2n})\right], \\ \frac{1}{2}\left[d(Px_{2n},\ Rx_{2n})\ +\ d(Qk,\ Rx_{2n})\ +\ d(Qk,\ Rx_{2n})\ +\ d(Qk,\ Rx_{2n})\right], \\ \frac{1}{2}\left[d(Px_{2n},\ Rx_{2n})\ +\ d(Qk,\ Rx_{2n})\ +\ d(Qk,\ Rx_{2n})\ +\ d(Qk,\ Rx_{2n})\ +\ d(Qk,\ Rx_{2n})\right],$$

$$[d(Px_{2n}, Rk) + d(Qk, Rx_{2n})]$$

$$=\{\,\frac{1}{2}\,[\,\,d(y_{2n},\,q)+d(y_{2n+1},\,y_{2n})],\,\,\frac{1}{2}\,[d(y_{2n},\,q)+d(y_{2n+1},\,q)],\,\,\frac{1}{2}\,[d(y_{2n},\,q)+d(Qk,\,y_{2n})],$$

$$\frac{1}{2}\left[d(y_{2n},\,q)+d(Qk,\,q)\right], \frac{1}{2}\left[d(y_{2n+1},\,y_{2n})+d(Qk,\,q)\right], \frac{1}{2}\left[d(y_{2n+1},\,q)+d(Qk,\,y_{2n})\right]\}$$

There are six possibilities:

Case 1:
$$d(q, Qk) \le sc_{n+1} + \frac{st}{2} [d(y_{2n}, q) + d(y_{2n+1}, y_{2n})]$$

$$\leq sc_{n+1} + \frac{st}{2}c_n + \frac{st}{2}[sd(y_{2n+1},q) + sd(q,y_{2n})]$$

$$\leq sc_{n+1} + \frac{st}{2}c_n + \frac{s^2t}{2}c_{n+1} + \frac{s^2t}{2}sc_n$$

$$\leq s(1+\frac{t}{2}+st)c_n$$

Case 2:
$$d(q, Qk) \le sc_{n+1} + \frac{st}{2} [d(y_{2n}, q) + d(y_{2n+1}, q)]$$

$$\leq sc_{n+1} + \frac{st}{2}c_n + \frac{st}{2}c_{n+1} \leq s(t+1)c_n.$$

Case 3:
$$d(q, Qk) \le sc_{n+1} + \frac{st}{2} [d(y_{2n}, q) + d(Qk, y_{2n})]$$

$$\leq sc_{n+1} + \frac{st}{2}\,c_n + \frac{st}{2}\left[sd(Qk,q) + sd(q,y_{2n})\right]$$

$$\left(1 - \frac{s^2t}{2}\right)d(q, Qk) \leq sc_{n+1} + \frac{st}{2}c_n + \frac{s^2t}{2}c_n$$

$$d(q, Qk) \le s \left(\frac{1 + \frac{t}{2} + \frac{st}{2}}{1 - \frac{s^2t}{2}}\right) c_n$$

Case4:
$$d(q, Qk) \le sc_{n+1} + \frac{st}{2} [d(y_{2n}, q) + d(Qk,q)]$$

$$\left(1 - \frac{st}{2}\right) d(q, Qk) \le sc_{n+1} + \frac{st}{2}c_n$$

$$d(q, Qk) \le s \left(\frac{1 + \frac{t}{2}}{1 - \frac{st}{2}}\right) c_n$$

Case 5:
$$d(q, Qk) \le sc_{n+1} + \frac{st}{2} [d(y_{2n+1}, y_{2n}) + d(Qk, q)]$$

$$\left(1 - \frac{st}{2}\right) d(q, Qk) \le sc_{n+1} + \frac{s^2t}{2} c_{n+1} + \frac{s^2t}{2} c_n$$

$$d(q, Qk) \le s \left(\frac{1+st}{1-\frac{st}{2}}\right) c_n$$

Case 6:
$$d(q, Qk) \le sc_{n+1} + \frac{st}{2} [d(y_{2n+1}, q) + d(Qk, y_{2n})]$$

$$\leq sc_{n+1} + \frac{st}{2} c_{n+1} + \frac{st}{2} \left[sd(Qk,q) + sd(q,y_{2n}) \right]$$

$$\left(1 - \frac{s^2t}{2}\right) d(q, Qk) \le sc_{n+1} + \frac{st}{2}c_{n+1} + \frac{s^2t}{2}c_n$$

$$d(q, Qk) \le s \left(\frac{1 + \frac{t}{2} + \frac{st}{2}}{1 - \frac{s^2t}{2}}\right) c_{n,}$$

Since the infimum of the sequences on the right hand side are zero, therefore d(q,Qk) = 0, that is Qk = q. Therefore Qk = Rk = q i.e. q is a point of coincidence of mappings Q, R and k is a coincidence point of mappings Q and R.

Now we show that Pk = q,

Consider,
$$d(Pk,q) \le sd(Pk, Qx_{2n+1}) + sd(Qx_{2n+1}, q) \le sc_{n+1} + stM_{x_k,2n+1}(P, Q, R)$$

where
$$M_{x_k,2n+1}(P,Q,R) \in \{\frac{1}{2} [d(Rk,Rx_{2n+1}) + d(Pk,Rk)], \frac{1}{2} [d(Rk,Rx_{2n+1}) + d(Pk,Rx_{2n+1})], \frac{1}{2} [d(Rk,Rx_{2n+1}) + d(Pk,Rx_{2n+1})], \frac{1}{2} [d(Rk,Rx_{2n+1}) + d(Rk,Rx_{2n+1})], \frac{1}{2} [d(Rk,Rx_{2n+1}) + d(Rk,Rx_{2n+1})$$

$$[d(Rk, Rx_{2n+1}) + d(Qx_{2n+1}, Rk)], \frac{1}{2} [d(Rk, Rx_{2n+1}) + d(Qx_{2n+1}, Rx_{2n+1})],$$

$$\frac{1}{2}\left[d(Pk, Rk) + d(Qx_{2n+1}, Rx_{2n+1})\right], \frac{1}{2}\left[d(Pk, Rx_{2n+1}) + d(Qx_{2n+1}, Rk)\right]\right\}$$

$$=\{\,\frac{1}{2}\,[d(q,\,y_{2n+1})+d(Pk,\,q)],\,\frac{1}{2}\,[d(q,\,y_{2n+1})+d(Pk,\,y_{2n+1})],\,\frac{1}{2}\,[d(q,\,y_{2n+1})+d(y_{2n+2},q)],$$

$$\frac{1}{2}\left[d(q,\,y_{2n+2})+d(y_{2n+2},\,y_{2n+1})\right], \\ \frac{1}{2}\left[d(Pk,\,q)+d(y_{2n+2},\,y_{2n+1})\right], \\ \frac{1}{2}\left[d(Pk,\,y_{2n+1})+d(y_{2n+2},\,q)\right]\}$$

There are six possibilities:

Case 1:
$$d(Pk, q) \le sc_{n+1} + \frac{st}{2} [d(q, y_{2n+1}) + d(Pk, q)]$$

$$\left(1 - \frac{st}{2}\right) d(Pk, q) \le sc_{n+1} + \frac{st}{2}c_{n+1}$$

$$d(Pk, q) \le s \left(\frac{1 + \frac{t}{2}}{\left(1 - \frac{st}{2}\right)}\right) c_{n+1}$$

Case 2:
$$d(Pk, q) \le sc_{n+1} + \frac{st}{2} [d(q, y_{2n+1}) + d(Pk, y_{2n+1})]$$

$$d(Pk,\,q) \leq sc_{n+1} + \, \frac{st}{2} \, c_{n+1} + \, \frac{st}{2} \, [sd(Pk,\,q) + sd(q,\,y_{2n+1})]$$

$$\left(1 - \frac{s^2t}{2}\right) d(Pk, q) \le sc_{n+1} + \frac{st}{2} c_{n+1} + \frac{s^2t}{2} c_{n+1}$$

$$d(Pk, q) \le s \left(\frac{1 + \frac{t}{2} + \frac{st}{2}}{1 - \frac{s^2t}{2}}\right) c_n$$

$$Case \ 3: \ d(Pk, \ q) \leq sc_{n+1} + \frac{st}{2} \left[d(q, \ y_{2n+1}) + d(y_{2n+2}, q) \right] \leq sc_{n+1} + \ \frac{st}{2} \ c_{n+1} + \ \frac{st}{2} \ c$$

$$d(Pk, q) \le s(1+t)c_{n+1}$$

Case 4:
$$d(Pk, q) \le sc_{n+1} + \frac{st}{2} [d(q, y_{2n+1}) + d(y_{2n+2}, y_{2n+1})]$$

$$\leq sc_{n+1} + \frac{st}{2} \, c_{n+1} + \frac{st}{2} \, [\ sd(y_{2n+2}, \, q) + sd(y_{2n+1}, q)]$$

$$\leq \ sc_{n+1} + \frac{st}{2} \, c_{n+1} + \frac{s^2t}{2} \, c_{n+1} + \, \frac{s^2t}{2} \, c_{n+1}$$

$$\leq s(1+st+\frac{t}{2})c_{n+1}$$

Case 5:
$$d(Pk, q) \le sc_{n+1} + \frac{st}{2} [d(Pk, q) + d(y_{2n+2}, y_{2n+1})]$$

$$\leq sc_{n+1} + \frac{st}{2} \left[(Pk,q) \right] + \frac{st}{2} \left[sd(y_{2n+2},q) + sd(q,\,y_{2n+1}) \right]$$

$$\left(1 - \frac{st}{2}\right) d(Pk, q) \le sc_{n+1} + \frac{s^2t}{2}c_{n+1} + \frac{s^2t}{2}c_{n+1}$$

$$d(Pk, q) \le s \left(\frac{1+st}{1-\frac{st}{2}}\right) c_{n+1}$$

Case 6:
$$d(Pk, q) \le sc_{n+1} + \frac{st}{2} [d(Pk, y_{2n+1}) + d(y_{2n+2}, q)]$$

$$d(Pk,\,q) \, \leq \, sc_{n+1} + \frac{st}{2} \left[sd(Pk,\,q) + sd(q,\,y_{2n+1}) \right] + \frac{st}{2} \, c_{n+1}$$

$$\left(1 - \frac{s^2t}{2}\right)d(Pk, q) \le s \left(\frac{1 + \frac{t}{2} + \frac{st}{2}}{1 - \frac{s^2t}{2}}\right)c_{n+1}$$

Since the infimum of the sequences on the right hand side are zero, therefore d(Pk, q) = 0, that is Pk = q. Therefore Pk = Rk = q, i.e. n is a point of coincidence of mappings P and R. Thus k is a coincidence point of mappings P and R.

Now it remains to prove that q is a unique point of coincidence of pairs {P, R} and {Q, R}.

Let q' be also a point of coincidence of these three mappings, then Pk' = Qk' = Tk' = q',

for $k' \in X$, we have,

$$d(q, q') = d(Pk, Qk') \le tM_{k,k'}(P, Q, R)$$

where
$$M_{k,k'}(P, Q, R) \in \{\frac{1}{2} [d(Rk, Rk') + d(Pk, Rk)], \frac{1}{2} [d(Rk, Rk') + d(Pk, Rk')],$$

$$\frac{1}{2}\left[d(Rk,\,Rk')+d(Qk',\,Rk)\right],\,\frac{1}{2}\left[d(Rk,\,Rk')+d(Qk',\,Rk')\right],\,\frac{1}{2}\left[d(Pk,\,Rk)+d(Qk',\,Rk')\right],$$

$$\frac{1}{2}\left[d(Pk, Rk') + d(Qk', Rk)\right]\right\}$$

$$= \{0, d(q, q')\}$$

Hence d(q, q') = 0 i.e. q = q'

If {P, R} and {Q, R} are weakly compatible, then q is a unique common fixed point of P, Q and R.

3.RESULTS AND DISCUSSION

In 2016, Rad and Altun¹⁵ proved some common fixed point results for three mappings on vector metric spaces. They proved the following results:

THEOREM 3.1:Let X be a vector metric space with E-Archimedean. Suppose the mappings $f,g,T:X\to X$ satisfy the following conditions:

(i) for all
$$x, y \in X$$
, $d(fx, gy) \le ku_{x,y}(f, g, T)$ (10)

where $k \in (0, 1)$ is a constant and

$$u_{x,y}(f,g,T) \in \{d(Tx,Ty), d(fx,Tx), d(gy,Ty), \frac{1}{2} [d(fx,Ty) + d(gy,Tx)](11)\}$$

- (ii) $f(X) \cup g(X) \subset T(X)$
- (iii) one of f(X), g(X) or T(X) is a E-complete subspace of X.

Then $\{f,T\}$ and $\{g,T\}$ have a unique point of coincidence in X. Moreover, if $\{f,T\}$ and

{g,T} are weakly compatible, then f,g and T have a unique common fixed point in X

where
$$k \in (0, 1]$$
. (12)

$$u_{x,y}(f,g) \in \{d(fx,gy), d(fx,gx), d(fy,gy), d(fx,gy), d(fy,gx)\}$$
 (13)

- (ii) $f(X) \subseteq T(X)$
- (iii) one of f(X) or T(X) is a E-complete subspace of X.

Then {f, T} have a unique point of coincidence in X. Moreover, if {f, T} are weakly compatible, then f and T have a unique common fixed point in X.

In 2017, Latpate¹ proved the results for three mappings on complete metric spaces. He proved the following result:

Let (X, d) be a complete Metric space and Let A be a nonempty closed subset of X.

Let P, Q: $A \rightarrow A$ be such that

$$d(P_x,\ Q_y) \leq \frac{1}{2} \left[d(R_x,\ Q_y) \,+\, d(R_y,\ P_x) \,+\, d(S_x,\ R_y) \right] \ \, \text{-} \, \psi[d(R_x,\ Q_y) \,+\, d(R_y,\ P_x)] \eqno(14)$$

For any $(x, y) \in X \times X$, where a function $\psi: [0, \infty)^2 \to [0, \infty)$ is continuous and $\psi(x, y) = 0$ iff x = y = 0 and R: A $\to X$ which satisfies the following condition.

- (i) $PA \subseteq RA$ and $QA \subseteq RA$
- (ii) The pair of mappings (P,R) and (Q, R) are weakly compatible.
- (iii) R(A) is closed subset of X.

Then P,R and Q have unique common fixed point.

Motivated by their results, we have proved similar results for three mappings on E-b-metric spaces.

Further, these results can be investigated for four and six mappings on E-b-metric space.

ACKNOWLEDGEMENTS

We are thankful for thereferees for valuable suggestions.

REFERENCES

- 1. Latpate, VV, Dolhare, UP, common fixed point theorem of three mappings in complete metric spaces, Int. J. Appl. Pure Sci. Agriculture, 2017; 03:1-6.
- 2. Abbas M, Rhoades and NaigrT, Common fixed point results for four maps in cone metric spaces, Appl. Math. Comput. Anal., 2010; 216l: 80-86.
- 3. ArshadM, Azam, A. and VetroP., Some common fixed point results in cone metric spaces, Fixed Point Theory Appl., 2009; Article ID 493965.
- 4. Jungck G, Common fixed point for commuting and compatible maps on compacta, Proc. Am. Math. Soc., 1988; 103: 977-983.
- 5. Rahimi H, Vetro Pand Soleimani RadG ,Some common fixed point results for weakly compatible mappings in cone metric type space, Miskolc Math. Notes., 2013; 14(1): 233-243.
- 6. AltunI, Cevik C, Some common fixed point theorems in vector metric spaces, Filomat, 2011;25(1):105–113.

- 7. PetreIR, Fixed point theorems in E-b-metric spaces, J. Non linear Sci. Appl. 2014; 07: 264-271.
- 8. Cevik C, Altun I, Vector metric spaces and some properties, Topol. Met. Nonlin. Anal., 2009; 34(2): 375-382.
- 9. Aliprantis CD, Border KC, Infinite Dimensional Analysis, Springer-Verlag, Berling, 1999.
- 10. Luxemburg WAJ, Zannen AC, Riesz Spaces, North-Holland Publishing Company, Amsterdam 1971.
- 11. Kir M. Kiziltunc H. On some well known fixed point theorems in b-metric spaces, Turkish J. Anal. Number Theory,2013; 01: 13-16.
- 12. Mishra PK, Sachdeva Sand Banerjee SK. Some fixed point theorems in b-metric space, Turkish J. Anal. Number Theory, 2014; 2: 19-22.
- 13. Rahimi H,Rohades E., Fixed point theorems for weakly compatible mappings in cone metric type space, Miskolc Math. Notes. 2013;14(1): 233-243.
- 14. Abbas M,Jungck G ,Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 2008; 341: 416-470.
- 15. Rad, G. S., Altun, I, Common fixed point results on vector metric spaces, J. Linear Topol. Algebra, 2016; 05: 29-39.