
Gurpreet Singh et al., IJSRR 2019, 8(2), 593-602 

IJSRR, 8(2) April. – June., 2019                                                                                                         Page 593 
 

    Research article           Available online www.ijsrr.org          ISSN: 2279–0543 
 

International Journal of Scientific Research and Reviews 
 

Numerical Solution of First Order Ordinary Differential Equations 
 

Inderdeep Singh1 and Gurpreet Singh2* 

 
1, 2 Assistant Professor (Mathematics), Department of Physical Sciences, 

Sant Baba Bhag Singh University, Jalandhar, Punjab-144030, India. 
Email: inderdeeps.ma.12@gmail.com, gurpreet20794@gmail.com 

ABSTRACT 
          In this article, we are presenting numerical solutions of first order differential equations arising 

in various applications of science and engineering using some classical numerical methods. We are 

considering only such practical problems which contain differential equations of the first order. 

Picard’s and Taylor series methods are used for solving such type of problems.   
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INTRODUCTION:  
           Differential equations arise from many problems in oscillations of mechanical and electrical 

systems, bending of beams, conduction of heat, velocity of chemical reactions etc. and as such play a 

very important role in all modern scientific and engineering studies. For applied mathematics, there 

are three phases for the study of a differential equation: 

(a) Formulation of differential equation from the given physical situation, called modelling. 

(b) Solutions of these differential equations by evaluating the arbitrary constants from the given 

conditions. 

(c) Physical interpretation of the solution. 

An ordinary differential equation is formed in an attempt to eliminate certain arbitrary constant 

from a relation in the variables and constants. In applied mathematics, every geometric or physical 

problem when translated into mathematical symbols gives rise to a differential equation. There are 

many classical numerical schemes which are used for solving linear aswell as nonlineardifferential 

equations.  Some common techniques are Picard method, Euler method, Taylor series method, finite 

difference method, finite element method, finite volume method, spectral method, Runge-Kutta 

method, etc.The Taylor series algorithm is one of the earliest algorithms for the approximate solution 

of initial value problems for ordinary differential equations. Newton6 used it in his calculation and 

Euler7 describes it in his work. Since then one can find many mentions of it such as Liouville8, 

Peano9, Picard10. In Yang & Liu2, Picard iterative technique is used for solving initial value problems 

of singular fractional differential equations. Picard method is used for solving ordinary differential 

equations in Hirayama11. In Corliss & Chang12, Taylor series method is used for solving differential 

equations. 

PICARD’S ITERATIVE METHOD: 
A number of numerical methods are available for the solution of first order differential 

equations of the form  

푑푦
푑푥 = 푓(푥, 푦),						푦(푥 ) = 푦 																																																									(1) 

Integrating (1) between limits, we get 

푑푦 = 푓(푥,푦)푑푥, 																																																															(2) 
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푦 = 푦 + 푓(푥,푦)푑푥. 

This is an integral equation equivalent to (1), for it contain the unknown 푦 under the integral 

sign. As a first approximation 푦  to the solution, we put 푦 = 푦  in 푓(푥,푦) and integrate (2), giving    

푦 = 푦 + 푓(푥, 푦 )푑푥. 

For a second approximation 푦 , we put 푦 = 푦  in 푓(푥, 푦) and integrate (2), giving    

푦 = 푦 + 푓(푥, 푦 )푑푥. 

Continuing this process, a sequence of functions of 푥 i.e., 푦 , 푦 ,푦 , … … .. is obtained each 

giving a better approximation of the desired solution than the preceding one. 

TAYLOR’S SERIES METHOD: 
Consider the first order differential equation (1). Differentiating (1), we get 

푑 푦
푑푥 =

휕푓
휕푥 +

휕푓
휕푦

푑푦
푑푥, 

i.e. 

푦 = 푓 + 푓 푓																																																																									(3) 

Differentiating this successively, we can get 푦 ,푦  etc. Putting 푥 = 푥  and 푦 = 0, the 

values of (푦′) , (푦′′) , (푦′′′)  can be obtained. Hence the Taylor’s series 

푦(푥) = 푦 + (푥 − 푥 )(푦′) +
(푥 − 푥 )

2! (푦′′) +
(푥 − 푥 )

3! (푦′′′) + − −− −													(4) 

 

gives the values of 푦 for every value of 푥 for which (4) converges. 

      On finding the values 푦  for 푥 = 푥  from (4), 푦 , 푦  can be evaluated at 푥 = 푥  by mean of (1), 

(3) etc. Then 푦 can be expanded about 푥 = 푥 . In this way, the solution can be extended beyond the 

range of convergence of series (4). 

APPLICATION OF DIFFERENTIAL EQUATIONS: 
In this section, some numerical experiments are performed for solving some applications of 

first order differential equations using some classical numerical methods. Numerical data show the 

accuracy of the proposed numerical methods.  
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RESISTED MOTION:  
Suppose a moving body is opposed by a force per unit mass of value 푐푥 and resistance per 

unit of mass of value 푏푣  where 푥  and 푣 are displacement and velocity of the particle at that 

instant(Assume the particle starts from rest). The equation of motion of the particle is  

푣
푑푣
푑푥 = −푐푥 − 푏푣 ,																																																																			(5) 

with initial condition 푣(0) = 푘. Equation (5) is nonlinear in 푣. It is difficult to find the solution of 

nonlinear differential equations in comparison to linear differential equations. We convert nonlinear 

differential equations into linear differential equations by using some substitutions.   

Put 푣 = 푧	and 2푣 =  in (5), we get   

푑푧
푑푥 + 2푏푧 = −2푐푥,																																																																			(6) 

with initial condition 푧(0) = 푟. Comparing (6) with (1), we get 

 

푓(푥, 푧) = −2푏푧 − 2푐푥 = −(2푏푧 + 2푐푥) 

By Picard’s Iterative Method: 

Integrating (6) between limits, we get 

푑푧 = 푓(푥, 푧)푑푥, 																																																																(7) 

푧 = 푧 − (2푏푧 + 2푐푥)푑푥. 

For a first approximation 푧  to the solution, we put 푧 = 푧  in 푓(푥, 푧) and integrate (7), we get   

푧 = 푧 − (2푏푧 + 2푐푥)푑푥. 

For a second approximation 푧 , we put 푧 = 푧  in 푓(푥, 푧) and integrate (7), we get   

푧 = 푧 − (2푏푧 + 2푐푥)푑푥. 

Continuing this process, a sequence of functions of 푥 i.e., 푧 , 푧 , 푧 , … … .. is obtained each giving a 

better approximation of the desired solution than the preceding one. The numerical solution of (5) is 

obtained from the relation 푣 = 푧.  

By Taylor’s Series Method: 

Consider the first order differential equation (6). Differentiating (6), we get 
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푑 푧
푑푥 =

휕푓
휕푥 +

휕푓
휕푧

푑푧
푑푥, 

i.e. 

푧 = 푓 + 푓 푓																																																																									(8) 

Differentiating this successively, we can get 푧 , 푧  etc. Putting 푥 = 푥  and 푧 = 0, the values of 

(푧′) , (푧′′) , (푧′′′)  can be obtained. Therefore the Taylor’s series 

푧(푥) = 푧 + (푥 − 푥 )(푧′) +
(푥 − 푥 )

2! (푧′′) +
(푥 − 푥 )

3! (푧′′′) + − −− −													(9) 

 

gives the values of 푧 for every value of 푥 for which (9) converges. 

      On finding the values 푧  for 푥 = 푥  from (9), 푧 , 푧  can be evaluated at 푥 = 푥 . Then z can be 

expanded about  푥 = 푥 . The numerical solution of (5) is obtained from the relation 푣 = 푧. 

Numerical Observations: 

We are discussing two cases: 

 

Case I:  

For 푏 = 푐 = 1/2,  Equation (6) becomes  

푑푧
푑푥 + 푧 = −푥,																																																													(10) 

with initial condition 푧(0) = 0. The exact solution of such problem is  

푧(푥) = (1 − 푒 )− 푥 

For Picard’s Iterative Method: 

푧 = −
푥
2 , 

푧 = −
푥
2 +

푥
6 , 

푧 = −
푥
2 +

푥
6 −

푥
24, 

푧 = −
푥
2 +

푥
6 −

푥
24 +

푥
120, 

푧 = −
푥
2 +

푥
6 −

푥
24 +

푥
120 −

푥
720, 

……………………………. 

……………………………. 
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For Taylor Series Method: 

 

푧 = −푥 − 푧				 ⟹			 푧 (0) = −푧(0) = 0		 

 

푧 = −1− 푧 		⟹				 푧 (0) = −1− 푧 (0) = −1	 

 

								푧 = −푧 			⟹				 푧 (0) = −푧 (0) = 1 

 

푧 = −푧 			⟹				 푧 (0) = −푧 (0) = −1 

------------------- 

------------------- 

Taylor series expansion is 

푧(푥) = 푧(0) + 푥푧 (0) +
푥
2 푧 (0) +

푥
6 푧 (0) +

푥
24 푧 ′(0) + − −−− 

푧(푥) = −
푥
2 +

푥
6 −

푥
24 + −− −− 

 

 
Figure 1Comparison of exact and numerical                      Figure 2 indicate the absolute errors for Example 1 
solutions of Example 1. 

Figure1 and Figure2 shows the comparison of exact and numerical solutions of Example 1 for 

푏 = 푐 = 1/2 (Taking first six terms for Picard’s and Taylor’s series method). 

Case II:  

For 푏 = , 푐 = 1,  Equation (6) becomes  

푑푧
푑푥 + 3푧 = −2푥,																																																													(11) 

with initial condition 푧(0) = 0.  The exact solution of such problem is  
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푧(푥) =
2
9

(1 − 푒 ) −
2
3 푥 

For Picard’s Iterative Method: 

푧 = −푥 , 

푧 = −푥 + 푥 , 

푧 = −푥 + 푥 −
3
4 푥 , 

푧 = −푥 + 푥 −
3
4 푥 +

9
20푥 , 

푧 = −푥 + 푥 −
3
4 푥 +

9
20 푥 −

27
120 푥 , 

……………………………. 

……………………………. 

For Taylor Series Method: 

 

푧 = −2푥 − 3푧					 ⟹ 		 푧 (0) = −3푧(0) = 0, 

 

푧 = −2 − 3푧 						⟹ 		 푧 (0) = −2 − 3푧 (0) = −2,	 

 

								푧 = −3푧 							⟹ 		 푧 (0) = −3푧 (0) = 6, 

 

푧 = −3푧 				⟹								 푧 (0) = −3푧 (0) = −18, 

 

………………………… 

………………………… 

Taylor series expansion is 

푧(푥) = 푧(0) + 푥푧 (0) +
푥
2 푧 (0) +

푥
6 푧 (0) +

푥
24 푧 ′(0) + − −−− 

푧(푥) = −푥 + 푥 −
3
4 푥 +

9
20 푥 −

27
120 푥 + − −−− −− − 
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Figure 3 Comparison of exact and numerical             Figure 4Absolute errors for example 1 

   solutions of Example 1(Case II)                                  (Case II) 

Figure3 and Figure4 shows the comparison of exact and numerical solutions of Example 

1for푏 = , 푐 = 1 (Taking first six terms for Picard’s and Taylor’s series method). 

ATMOSPHERIC PRESSURE: 
To find the atmospheric pressure 푝	푙푏. 푝푒푟	푓푡. at a height 푧	푓푡. above the sea level, when the 

temperature is constant. 

Let a vertical column of air of unit cross-section. Let 푝 be the pressure at a height 푧 above the sea-

level and 푝 + 훿푝 at height푧 + 훿푧. Let 휌 be the density at a height푧. Since the thin column 훿푧 of air is 

being pressured upwards with pressure 푝 and downwards with pressure 푝 + 훿푝. By considering 

equilibrium, we get 

푝 = 푝 + 훿푝 + 푔휌훿푧																																																												(12) 

From (12), we get 

푑푝
푑푧 = −푔휌,																																																																									(13) 

which is the differential equation giving the atmospheric pressure at a height 푧. 

 

When the temperature is constant, 푝 = 푘휌 using Boyle’s law, we get 

푑푝
푑푧 = −푔

푝
푘 ,																																																																									(14) 

with initial condition 푝(0) = 푝 .  The exact solution is  

푝 = 푝 푒 . 

Letting  푝 = 1. 
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For  Picard’s  Iterative Method: 

푝 = 1 −
푔푧
푘 , 

푝 = 1 −
푔푧
푘 +

1
2!

푔푧
푘 , 

푝 = 1−
푔푧
푘 +

1
2!

푔푧
푘 −

1
3!

푔푧
푘 , 

푝 = 1 −
푔푧
푘 +

1
2!

푔푧
푘 −

1
3!

푔푧
푘 +

1
4!

푔푧
푘 , 

……………………… 

……………………… 

For Taylor series method: 

푝 = −
푔
푘 푝, 푝′(0) = −

푔
푘 , 

푝′ = −
푔
푘 푝 , 푝′′(0) =

푔
푘 , 

푝′′ = −
푔
푘 푝 , 푝′′′(0) = −

푔
푘 , 

푝′′ = −
푔
푘 푝 , 푝′′′′(0) =

푔
푘 , 

…………………………. 

…………………………. 

Using Taylor’s series method,  

푝(푧) = 푝(0) + 푧푝 (0) +
푧
2! 푝

(0) +
푧
3! 푝

(0) +
푧
4! 푝

(0) −− −− − 

푝(푧) = 1 − 푧
푔
푘 +

푧
2!
푔
푘 −

푧
3!
푔
푘 +

푧
4!
푔
푘 − − −− −− 

CONCLUSION: 
Picard’s and Taylor’s series methods are powerful mathematical tools for solving linear and 

nonlinear differential equations. It is concluded that Picard’s and Taylor’s series methods gives more 

accurate solutions, which are much closer to  exact solutions, for solving first order differential 

equations arising in some applications of sciences and engineering.   
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