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ABSTRACT

Glycal-  the C1-C2 double bonded aldose is one of the most convenient chiral  synthons in

synthetic  chemistry.  Simple sugars Glucose,  Galactose can be easily  converted  into a variety of

glycals which are valuable starting materials for highly stereo controlled synthesis of optically pure

compounds. 2-C-Formyl glycals is a special class of carbohydrate compounds possessing conjugated

enyloxy  carbonyl  functional  groups  react  with  allyloxysilane  in  presence  of  metal  Lewis  acids

catalyst like Indium(III) chloride can install allyl alcohol at C3 to achieve C-3-O-allyloxy glycosides

products  with  excellent  chemo-  regio-  and  stereo  selectivity.  InCl3  reveals  outstanding  catalytic

efficiency for this glycosylation reaction to afford only the C-3-O-allylated anomers in excellent

yield (90%).All the target compounds were characterized byFT-IR, NMR spectral and HR-MS data. 
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INTRODUCTION

Carbohydrates are the most abundant organic compounds occurring in the Nature. They play

vital role in the biological processes1,2  among which the cell recognition or cell-antigen interactions

are  particularly  important.  Ease  availability,  their  multichiral  architecture  and  well-defined

stereochemistry have made them attractive precursors in organic synthesis. Carbohydrate derivatives

are used during the last few decades as ‘chiral pool’ constituents in the enantioselective synthesis of

biologically active compounds. In chiron approach the sugar skeleton is incorporated into the target

molecule.3,4

These  compounds  are  of  major  significance  in  synthesis  because  of  the  wide  range  of

biologically important compounds that can be obtained from them by addition and other chemical

processes.5,6The presence of an α,β-unsaturated carbonyl moiety has extended the versatility of 2-C-

formyl glycals as potential synthons.  Synthesis of  C-3-O-allyl-2-C-formyl glycals are under taken

toward synthesis of sugar-based new chiral heterocycles involving metal catalyzed π-bond activation

and cyclization process.72-C-Formyl glycals bearing an α,β-unsaturated system are ideally suitable

for  Michael  reaction,  but  they  do  not  undergo  either  acid-  or  base-catalyzed  Michael  addition

reactions  with  alcohols  or  phenols  under  standard  reaction  conditions.  Interestingly,  Lewis  acid

catalyzed glycosylation of the formyl glycals is known in the literature.8More than stoichiometric

amount of BF3 and ZnCl2 (5 equivalent)  are used to afford only the  C-3-O-glycosides involving

displacement of the C3-substituent. I am also looking for a chemoselective catalytic system under

mild and acid free reaction conditions toward the new chiral  C-3-O-glycosides as there are some

weaknesses in the current glycals system.9-12Indium(III) chloride, which is a relatively strong Lewis

acid, has been used as a catalyst for a wide variety of organic reactions.

MATERIALS AND METHODS

Material Synthesis:

Synthesis of 2-C-formyl-3,4,6-tri-O-benzyl-/methyl glycals  (1a-d): 2-C-Formyl-glycal aldehydes

(glucal and galactal) were synthesized as depicted in Scheme 1–Scheme 4. Glucose and galactose

were converted into the corresponding glycal acetates upon treatment of dry HBr-AcOH and Zn-Cu

couple. These glycal acetates were hydrolyzed and protected through alkylation (benzyl and methyl)

after  formation  of  alkoxide  using  NaH  in  DMF.  They  were  subsequently  converted  into  the

corresponding 2-C-formyl glycals (1a, 1b, 1c and 1d) by Vilsmeier-Haak reaction.9,13
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Scheme 1. Synthesis of 2-C-(-3,4,6-tri-O-benzyl)galactal aldehydes(1a)

Scheme 2. Synthesis of 2-C-(3,4,6-tri-O-methyl)glucal aldehyde (1b)

Scheme 3.Synthesis of 2-C-(3,4,6-tri-O-methyl)galactal aldehyde (1c)

Scheme 4.Synthesis of 2-C-(-3,4,6-tri-O-benzyl)galactalaldehyde (1d)

RESULTS AND DISCUSSIONS

Installation of Allyloxy Group to 2-C-Formyl Glycals:

From the beginning, glycosylation reaction of 2-C-formyl glycal  (1) is investigated using

metal  Lewis  acid  catalysts  which  can  install  allyl  alcohol  (2)  at  C3 to  achieve  C-3-O-allyloxy

products (3) with excellent chemo- regio- and stereoselectivity.   Stereoselective synthesis of the two

possible  isomeric chiralsugar-based  synthons of  C-3-O-allyl-2-C-formyl  glycals  is  under  taken

(Scheme 5). It is expected that choice of proper metal catalyst can chelate preferentially either sugar-
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ring oxygen or aldehyde oxygen to incorporate allyloxy group to direct displacement  of the OR

group at the C3 position. Herein, role of the Lewis acid is to guide the position as well as orientation

of the incoming nucleophile to afford chiral synthons with high selectivities.   

Scheme 5.Strategy for the synthesis of C-3-O-allyl-2-C-formyl glycals
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Development and Optimization of the Reaction:

The  glycosylation  reaction  of  (-)-3,4,6-tri-O-methyl-2-C-formyl-D-glucal  (1b)  with

allyloxysilane is chosen as model reaction (Scheme 5). However, allyloxysilane is prepared in situ

using  nBuLi at -78 °C and TMSCl in dichloromethane.  After used various metal catalysts  I have

foundIndium(III)  chloridean excellent  catalyst  to  maximize  the  yields as  well  as  to  enhance  the

chemo-, regio- and stereoselectivity of this glycosylation reaction . It has also afforded the most

desired regioisomer 3. InCl3 reveals outstanding catalytic efficiency for this glycosylation reaction to

afford only the C-3-O-allylated anomers (3) in excellent yield (90%). Besides anomeric selectivity;

the yield is also very high. After extensive studies polar aprotic solvent dichloromethane is found as

ideal reaction medium for the chemical process.In the case of2-C-formyl galactal I have found only

C-3-O-glycosides with exclusive formation of α-diastereomer. 

SynthesisC-3-O-allyl-2-C-formyl glycal glycosides:

Scheme 6. Synthesis C-3-O-allyl-2-C-formyl glycals
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With this initial success, the versatility of the benign synthetic approach is examined using

various 2-C-formyl glycals and allyl alcohols (Scheme 6). The results are shown in Table 1.  The

metal  catalyzed (3-5 mol%) glycosylation reaction is  studied to furnish  C-3-O-allylated products

with  good  regio-  and  stereoselectivity.  The  reaction  rates  are  usually  fast  (3.0-5.0  h)  and  high

yielding (81-90%). Methyl (entries 1, 2 of Table 1), benzyl (entries 3, of Table 1), allyl (entry 5,
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Table 1) and crotyl  (entry 6, Table 1) protected  2-C-formyl glycals systems are tolerated in the

synthetic protocol developed under the mild reaction conditions. InCl3have smoothly transformed the

precursors  to  the  desired  C-3  glycosylated  products  (Table  1)  with  comparable  yield  and

stereoselectivity. InCl3have produced only the C-3 substituted products (Table 1). Other alcohol with

double bond is also installed exclusively at C-3 (entry 5, Table 1). 

Table 1: Experimental data ofC-3-O-alkyl-2-C-formyl glycosides

Entry Aldehyde Alcohol Glycoside MLn Time(h) Yield(%)

1.

2.

4.

3.
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InCl3 4.5 82
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InCl3 4.0 81

InCl3 5.0 86

InCl3 4.5 81

InCl3 5.0 84

In these experiments, two closely moving spots are appeared in the TLC (almost identical R f)

of the post reaction mixture which are due to the presence of correspondingC-3-O-allyl-2-C-formyl

glycosides.  The  products  is  determined  by  NMR  methods  after  purification  by  column

chromatography. A number of new chiral synthons synthesized in this mild catalytic approach are

the  potential  candidates  for  construction  of  valuable  chiral  heterocyclic  scaffolds  like  chiral

pyranopyran and others.5
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General experimental procedure for preparation ofC-3-O-allyl-2-C-formyl glycoside:

Synthesis of (2R,3R,4S)-4-(allyloxy)-3-(benzyloxy)-2-(benzyloxymethyl)-3,4-dihydro-2H-pyran-
5-carbaldehyde (3c)  :

Allyl- and other unsaturated alcohols (2,1.0 mmol) was taken in DCM (3.0 mL) under argon

atmosphere and nBuLi (1.6M) was added dropwise at -78 ºC. After 20 min., TMSCl (1.5 mmol), 2-C-

formyl glycal (1) and Lewis acid catalyst InCl3(2-3 mmol) were added and the content of the reaction

mixture was allowed to room temperature.  Progress of the reaction was monitored by TLC and it

was complete in 4.5h. The diastereoisomers were isolated after purification through MPLC (Eyela;

Column:  50x2.5cm;  flow  rate:  3mL/min;  silica  gel:  230-400mesh;  Eluent:  9-11%  EtOAc/pet.

ether). Thus,  the  reaction  of  2-C-formyl-3,4,6-tri-O-benzylgalactal (1d, 444 mg,  1.0  mmol)  with

Prop-2-en-1-ol  (2a,58  mg,1.0  mmol)afforded(2R,3R,4S)-4-(allyloxy)-3-(benzyloxy)-2-

(benzyloxymethyl)-3,4-dihydro-2H-pyran-5-carbaldehyde (3c)  after processing in an isolated yield

of 82% (323 mg, 0.82 mmol). 

Characteristic data:

C  ompound   3c  

3c

O

CHOBnO

BnO

O

Yield:82% (323 mg, 0.82 mmol).

Characteristic: Colorless viscous liquid.

[α]D
25 +102.9º (c 1.0, CHCl3).

1H NMR (300 MHz, CDCl3): δ 3.65 (1H, dd, J = 6.0, 9.0 Hz), 3.74 (1H, s), 3.84 (1H, dd, J = 6.0, 3.0

Hz), 4.09 (2H, d, J = 6.0 Hz), 4.35-4.63 (6H, m), 5.14-5.29 (2H, m), 5.82-5.95 (1H, m), 7.21-7.46

(11H, m), 9.39 (1H, s).
13C NMR (75 MHz, CDCl3): δ 62.9, 68.3, 70.4, 70.6, 72.1, 73.5, 75.8, 117.1, 118.0, 127.8, 128.0,

128.1, 128.4, 128.5, 134.7, 137.1, 137.5, 166.0, 190.2.

FT-IR (neat, cm-1): 921, 1072, 1220, 1455, 1624, 1672, 2734, 2858, 2921, 3030, 3439.  

HR-MS (m/z) for C24H27O5 (M+1): Calculated 395.1780, Found 395.1770.

CONCLUSIONS

2-C-formyl-glycal synthons are synthesized by glycosylation reaction of 2-C-formyl glycals

in presence of commercially available metal catalysts InCl3with low catalytic loading (3-5 mol%).
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Allyl and functionalized alcohols are successfully converted into corresponding allyloxysilanes and

the glycals are glycosylated in situ in highly chemo-, regio- and stereoselective fashion. The reaction

is fast and high yielding. The regioselection is quite different from the normal glycosylation reaction

in presence of Lewis acid. A number of new sugar-based chiral synthons are synthesized for the first

time which are the potential candidates for construction of new chiral heterocycles like pyranopyran,

fused-pyranopyran etc.  The proposed model  of  the mechanistic  pathway for the reaction  is  also

outlined to explain the unusual stereoselectivity toward construction of the chiral building blocks. 
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