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ABSTRACT  
In everyday life, we observe that, the numbers of people arrive at a cinema-ticket-window. If 

the people arrive ‘frequently’, they will have to wait for getting their tickets. Under such 
circumstances, the only alternative is to form a ‘queue’, called the ‘waiting- line’. Thus we see that 
queues or waiting-lines are very common in modern civilized life as at bus-stops, doctors’ clinics, 
bank-counters, traffic-lights, reservation-office, counters of super-market etc. In festive season we 
can see a queue at temples also. But for queuing theory purpose it may be remembered that the queue 
need not be a physical line, it may be a dispersed list of persons e.g. waiting list for a berth on a train. 
Queues are found in workshops also, where the machines wait to be repaired, in factories where 
manufactured goods wait to supply, store-rooms where articles wait to be used, incoming-calls wait 
to mature in telephone-exchange, ships wait to be unloaded, aeroplanes wait to take-off, vehicles 
waiting to proceed and so on. Such lists are as real as physical queues. 
In computer science a sequence of stored data or programs a waiting processing are the examples of 
queue. Computer programs often work with queues as a way to order tasks. For example, when the 
CPU finishes one computation, it will process the next one in the queue. A printer queue is a list of 
documents that are waiting to be printed. When we decide to print a document, it is sent to the printer 
queue, if there are no jobs currently in the queue, the document will be printed immediately. 
However, if there are jobs already in the queue, the new document will be added to the list and 
printed when the other have finished. Most printers today come with software that allows us to 
manually sort, cancel and add jobs to the printer queue. 
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INTRODUCTION:   
In general, a queue is formed at a queuing system when either customers ( human beings or 

physical entities) requiring service wait due to number of customers exceeds the number of service 

facilities or service facilities do not work efficiently and take more time than prescribed to serve a 

customer. Hence “a group of items waiting to receive service, including those receiving the service is 

known as a ‘waiting-line’ or a ‘queue’. The word ‘queue’ comes, via French, from the Latin ‘Canda’, 

meaning ‘tail’ and is pronounced exactly like the letter ‘Q’. 

The person waiting in a queue or receiving the service is called the ‘customer’ and the person 

by whom, he is serviced is called a ‘server ‘.Point where service is provided is known as ‘service-

station’. The idea about a queue may be expressed as under: 

 

Figure 1: Queue or Waiting Line 
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Some practical situations in which the solutions to waiting line problems can be find out using 

queuing-theory are as under: 

Table 1: practical situations 

SITUATIONS SITUATIONS SERVICE-FACILITIES 

Bus-Stop Passengers Buses 

Hospital Patients Doctors/ Nurses/ Rooms 

Work-Shop Machines Mechanics 

Airport Aircraft Runway 

Post-Office Letters Sorting System 

Job-Interviews Applicants Interviewers 

Pizza Parlour Requests for Pizza Deliveries of Pizzas 

                             

We have also seen that as a system gets congested, the service delay in the system increases. 

A good understanding of relationship between congestion and delay is essential for designing 

effective congestion control algorithms. Queuing theory provides all the tools needed for this 

analysis. 

COMMUNICATION DELAYS: 

Before we proceed further, let’s understand the different components of delay in a messaging 

system. The total delay experienced by messages can be classified into the following categories: 

Processing Delay: 
This is the delay between the times of receipt of a packet for transmission to the point of putting it 

into the transmission queue. 

On the receive end, it is the delay between the time of reception of a packet in the receive queue to 

the point of actual processing of the message. 

                 This delay depends on the CPU speed and CPU load in the system. 
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Queuing Delay: 
This is the delay between the point of entry of a packet in the transmit queue to the actual point of 

transmission of the message. 

                 This delay depends on the load on the communication link. 

Transmission Delay: 
This is the delay between the transmissions of first bit of the packet to the transmission of the last bit. 

                 This delay depends on the speed of the communication link. 

Propagation Delay: 
This is the delay between the point of transmission of the last bit of the packet to the point of 

reception of the last bit of the packet at the other end. 

                 This delay depends on the physical characteristics of the communication link. 

Retransmission Delay: 
This is the delay that results when a packet is lost and has to be retransmitted. 

                 This delay depends on the error rate on the link and the protocol used for retransmissions. 

In this paper we will be dealing with queuing delay. A queuing system is a birth-death 

process with a population consisting of customers either waiting for service or currently in service. A 

birth occurs when a customer arrives at the service facility; a death occurs when a customer departs 

from the facility. Another factor that has an important effect on the behaviour of a queuing system is 

the method that customers use to determine which line to join. For example, in some banks, 

customers must join a single line, but in other banks, customers may choose the line they want to 

join. When there are several lines, customers often join the shortest line. Unfortunately, in many 

situations (such as a super market), it is difficult to define the shortest line.  

CUSTOMERS BEHAVIOUR IN A QUEUE: 
Customers generally behave in the following ways: 

1. Balking: A customer may not like to wait in a queue due to lack of time or space or otherwise. 

2. Reneging: A customer may leave the queue due to impatience. 

3. Collusion: Some customers may collaborate and only one of them may join the queue. As at the 

cinema ticket window one person may join the queue and purchase tickets for his friends. 



  Agarwal Rashmi et al., IJSRR 2013, 2(3), 17- 35 

IJSRR, 2(3) July - September 2013         Page21  

4. Jockeying: If there are more than one queue then one customer may leave one queue and join 

the other. This occurs generally in the super market. 

Hence if there are several lines at a queuing facility, it is important to know whether or not customers 

are allowed to switch, or jockey, between lines. In most queuing systems with                                                  

multiple lines, jockeying is permitted, but jockeying at a toll booth plaza is not recommended.  

IMPORTANT DEFINITIONS IN QUEUING PROBLEM: 
Here we give the definitions of various terms used in the queuing theory. 

1. Queue Length: Queue length is defined by the number of persons (customers) waiting in 

the line at any time. 

2. Average Length of Line: Average length of line (or queue) is defined by the number of 

customers in the queue per unit time. 

3. Waiting Time: It is time up to which a unit has to wait in the queue before it is taken into 

service. 

4. Servicing Time: The time taken for servicing of a unit is called its servicing time.  

5. Busy Period: Busy-period for the server is the time during which he remains busy in 

servicing.  Thus, it is the time between the start of service of the first unit to the end of 

service of the last unit in the queue.  

6. Idle Period: When all the units in the queue are served. The idle period of the server begins 

and it continues up to the time of arrival of the unit (customer). The ideal period of a server is 

the time during which he remains free because there is no customer present in the system.  

7. Mean Arrival Rate: The mean arrival rate in a waiting-line situation is defined as the 

expected number of arrivals occurring in a time interval of length unity. 

8. Mean Servicing Rate: The mean servicing rate for a particular servicing station is 

defined as the expected number of services completed in a time interval of length unity, given 

that the servicing is going on throughout the entire time unit. 

9. Traffic Intensity: In case of a simple queue the traffic intensity is the ratio of mean arrival 

rate and the mean servicing rate. 

                       i.e.     Traffic intensity=    Mean arrival rate/ Mean servicing rate. 
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We have developed some basic understanding of a queuing system. To further our understanding 

we will have to dig deeps into characteristics of a queuing system that impact its performance. For 

example, queuing requirements of a restaurant will depend upon factors like: 

1. How do customers arrive in the restaurant? Are customer arrivals more during lunch and 

dinner time (a regular restaurant)? Or is the customer traffic more uniformly distributed (a 

cafe)? 

2. How much time of customers spends in the restaurant? Do customers typically leave the 

restaurant in a fixed amount of time? Does the customer service time vary with the type of 

customer? 

3. How many tables does the restaurant have for servicing customers? 

The above three points correspond to the most important characteristics of a queuing system. 

Obviously, an increase in the existing service facilities would reduce the customer’s waiting time. 

Conversely, decreasing the level of service should result in long queue(s). This means an increase 

(decrease) in the level of service increases (decreases) the cost of operating service facilities but 

decreases (increases) the cost of waiting. 

OBJECT OF THE QUEUING THEORY: 
If there are queues then customers have to wait for some time before service. The time lost in 

waiting is often expensive in terms of money, equipments, etc. As such there are costs associated 

with waiting in line, commonly known as ‘waiting-time cost’. On the other hand, if there are no 

queues, members of the servicing stations might stay idle and thus prove burdensome. Costs 

associated with service or the facilities are known as ‘service cost’. The object of queuing theory is 

to achieve a good economic balance between these two types of costs and the optimum solution is 

arrived at a point where the sum of the waiting line and service costs is minimum. In brief, the object 

of any queuing problems is to minimize the total waiting and service costs. 

The above graph illustrates both types of costs as a function of level of service. Since cost of 

waiting is difficult to estimate, it is usually measured in terms of loss of sales or goodwill when the 

customer is a human being who has no sympathy with the service. But, if the customer is a machine 

waiting for repair, then the cost of waiting is measured in terms of the cost of lost production. 

It is important to note that queuing theory does not directly solve the problem of minimising 

the total waiting and service costs but the theory provides the management with information 

necessary to take relevant decisions for the purpose. 
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Figure 2: Types of costs as a Function of level of service 

LITERATURE REVIEW: 
Robert B. Cooper, Flouda Atlantic University, Shun – Chen Niu, University of Texas at 

Dallas, Mandyam M. Srinivasan, University of Tennessee,1 In this paper they compared two versions 

of a symmetric two – polling model. One of them is state – Independent setups, according to which 

the server sets up at the polled queues whether or not work is waiting there. The other is State – 

Dependent setups, according to which the server sets up only when work is waiting at the polled 

queue. They find that the second version performs (i) the same as, (ii) worse than, or (iii) the better 

than, its first version if the switchover and setup time, are respectively (i) both constants, (ii) variable 

and constant or (iii) constant and variable.  

The authors characterized the difference in the expected wating times of State – Independent setups 

and State – Dependent setups through their paper. 

Robert B. Cooper, Flouda Atlantic University, Shun – Chen Niu, University of Texas at 

Dallas, Mandyam M. Srinivasan, In this paper the authors have tried to explain why the length – 

biasing property of renewal theory is ubiquitous in queuing theory and why some recently – 

uncovered surprising behaviour in polling models can be attributed its effects, using intuitive 

arguments2.  
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The authors derived formulas that describe some results for polling models, such as the 

reduction of waiting times as a consequence of forcing the server to set up even when no work is 

waiting. 

Consider the waiting time W in the ordinary M / G / 1 queue. The celebrated Pollaczek-

Khintchine formula relates the mean waiting time to the basic parameters of the model (the arrival 

rate λ of the Poisson arrival process, and the mean and variance of the service time S) as follows: 

  E(W) =  ρ/(1 - ρ) ½ [E(S) + V(S)/E(S)] .......(1) 

Where  

  ρ = λ E(S)  if λ E(S)  < 1, and,  1 if λ E(S) ≥ 1  .......(2) 

and E and V denote the mean and variance, respectively. 

The quantity ρ defined in (2) equals the utilization of the server. As (1) clearly shows, for any 

positive value of ρ , no matter how small, E(W) can be arbitrarily large (because the variance-to-

mean ratio V(S) / E(S), often called the “index of dispersion” in statistics, on the right- hand side of 

(1) can arbitrarily large). This is a truly remarkable and counterintuitive insight.  

Furthermore, the probability that a customer will have to wait at all is P ( W > 0) = ρ (the 

fraction of customers who find the server busy equals the fraction of time that the server is busy, by 

PASTA; see Wolff), which is insensitive to the particular form of the service-time distribution 

function. Thus, of two fundamental performance measures for M / G / 1, one of them (How often do 

customers wait?) does not depend in any way on the variability of the service times, whereas the 

other measure (How long do customers wait?) is quite sensitive to this variability.  

The culprit here is, of course, the term 

 E(Y) = ½ [E(S) + V(S)/E(S)]= E(S2)/2V(S),  

Robert B. Cooper, Shun – Chen Niu, Mandyam M. Srinivasan, In this paper the authors 

developed simple implicit formulas for the expected waiting time as a function of mean and variance 

of the setup times in standard polling models with either exhaustive or gated service discipline3. 

Theorem 1 showed the expected waiting time can be reduced by inserting a forced idle time before 

or during a set – up. Which is,  
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Theorem 1: If the service discipline is exhaustive, then 

 

 z*(k) = [1 – ρr] / [1 – ρk] √ gk ,       (1)  

 

where gk is a constant given by 

 

gk = V[Zk] + ∑ [Ґ(k ) / ρ1
2] V [ Zt].        (2) 

 

The coefficients : { Ґ(k )
i : 1 ≤ i ≤ N} in (2) are defined by 

Ґ(k )
t = ∑ [γ(k )

jf ]2  ,         (3) 

 

where (i) For k = 1, the constants { γ(k )
tf : 1 ≤  i ≤  N; 0 ≤  c < ∞} are determined by the recursion 

 

  γjf 
(1) =  [ρt / (1 – ρt )] [ ∑ γ(1 )

jf  + ∑ γ(1 )
jf - 1  ] ,     (4) 

 

with the initial condition γ(1 )
jf - 1  = 1 and  γ(1 )

jf - 1 =  0 for 1 < i ≤ N - 1; and (ii) for 1 < k ≤ N, the 

constants : { γ(k )
tf : 1 ≤  i ≤  N; 0 ≤  c < ∞} are determined by the same recursion (4) after 

renumbering the queues so that queue k becomes queue 1, queue k + 1 becomes queue 2, and so on. 

 

In the special case of a symmetric polling model, the expected waiting time is given by the explicit 

formula 

 

E [W] = [ρT/ (1 – ρT)] [ b(2) / 2b] + (N / 2) (V [Z] / z) + (z / 2) [ (1 - ρT/ N) / (1 – ρT)]    , (5) 

 

and the minimizing value z*(k) = z* is the same for all queues, given by 

 

z* = N √ [  V(Z) { (1 - ρT ) / (N - ρT ) }]             (6) 

R. B. Cooper, Shun – Chen Niu, Mandyam M. Srinivasan, In their paper, the authors 

considered the classical polling model: queues served in cyclic order will either exhaustive or gated 

service, each with its own distinct Poisson arrival stream, service - time distribution and switchover – 

time distribution. They generalize a result of S. W. Fuhrmann for the case of constant switch over 

times, where no variance modification is necessary4. 
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In my side the effect of these studies is to reduce computation and to improve theoretical 

understanding of polling models.  

Theorem 2: If the polling discipline is exhaustive service, then 

 E[ Wi ] = E[Wi
0] + (R / 2) [(1 – ρi) / (1 – ρ)]     (1)  

Where Wi
0 is the waiting time in the “corresponding” exhaustive – service model with zero 

switchover times and correspondence parameters 

 xi
(2) =  bi

(2)  + δi-1
2 [ λi R / (1 – ρ)]-1       (2) 

(2) If the polling discipline is gated service, then 

E[ Wi ] = E[Wi
0] + (R / 2) [(1 + ρi) / (1 – ρ)]     (3)  

Where Wi
0 is the waiting time in the “corresponding” gated service model with zero switchover 

times and correspondence parameters 

xi
(2) =  bi

(2)  + δi
2 [ λi R / (1 – ρ)]-1       (4) 

The theorem says that in each case, the expected waiting time in the general- switchover-

times model equals the sum of the expected waiting time in the “corresponding” 0-swichover-times 

model plus a simple term that depends only on the server utilization and the sum (but not the 

individual values) of the mean switchover times.  

In the important special case when the switchover times are (not necessarily equal) constants     

(i. e., when δ2 = 0), then from (2) and (4), xi
(2) =  bi

(2) and the “corresponding” 0-switchover-times 

model is the “true” corresponding 0-switchover-times model; that is, the effect of the switch-over 

times is truly additive. During the course of our work, we learned via a preprint of Fuhrmann,  that 

this special case of the theorem was about to be published (and in fact, had been discovered in 1986). 

Fuhrmann’s argument uses the concept of “ancestor” and “ancestral lines” in the same way as used 

in Fuhrmann and Cooper (1985) in the analysis of decomposition in the M / G / I generalized- 

vacations-model. Fuhrmann shows that, for constant switchover times, the population of customers 

present in the system (represented by a vector whose components are the numbers of customers 

present at each queue) at a poling epoch enjoys a stochastic decomposition. In contrast, our proof 

(for the exhaustive- service case) begins with the vacation decomposition result itself, in its mean-

value form. Our argument, which is completely different from and independent of Fuhrmann’s, not 

only provides some additional insight for the analysis of other polling models, but it also leads toa 
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surprising generalization (for mean values) relative to Fuhrmann’s statement. That is, the 

decomposition theorem retains its form even when the switchover times are random variables.5  

M. M. Srinivasan, Shun – Chen Niu, R. B. Cooper, In this authors assumed, the queues are 

attended by the server in cyclic order and they transformed results for the host of service disciplines 

that completely characterized the relationship between the waiting times in these two polling models 

with zero and non – zero switchover times6. 

The authors established continuity in distribution of the waiting times and their transform 

results can be used to drive, higher – moment generalization of expected – waiting times results. 

Theorem 3: Under the exhaustive-service discipline, the LST of the waiting time in the        zero-

switchover-times model is 

 

  W1
0(s) = [{λ (1 – ρ) / (1 – ρ1)} {H1( 1 – s / λ1) / s } ] W1

*(s)    (1) 

 

Formula (1) which we believe is new, complements formula. The latter formula was derived based 

on a Markov chain embedded at switch points, whereas ours is based on a Markov chain embedded 

at polling epochs. It can be shown, via a proper “translation” between the solutions to these two 

embedded chains, that these formulas are equivalent_ 

Shun – Chen Niu, R. B. Cooper, In this paper, authors analyzed to work with a modified 

Markov Process that has a more detailed state description. At any time, when the server is busy, they 

replace “the number of customers present” by two variables, (a) the number of customers who are 

still waiting in the queue, and  (b) the number of customers who arrived during that time service but 

prior to that particular time. They show that this minor change of state definition makes possible a 

surprisingly simple analysis of the M / G / I / K queue. In this paper the authors work with the 

Poisson – arrival case because of its simplicity and its basic importance7.          

In my opinion, the basic method already has been explained here, and they are focusing on the 

computational issues. 

S. W. Fuhrmann, AT & T bell Laboratories, Holmdel, New Jersey, R. B. Cooper, In this 

paper authors considered a class of M / G / I queuing models with a server who is unavailable for 

occasional intervals of time. The times when the server is unavailable may correspond to times when 

the server is working at other queues. In this paper the authors demonstrate that the decomposition 

like the stationary number of customers present in the system at a random point in time is distributed 
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as the sum of two or more independent random variables, holds, in fact, for a very general class of M 

/ G / I queuing models8.  

The M / G / I decomposition property holds for all M / G / I models of general form. In my opinion 

the parallel decomposition of waiting times was demonstrated in a more confined manner. 

R. B. Cooper, [1976], In this paper, the author considered a queuing system in equilibrium in 

which arrive according to a Poisson process and request service from a group of parallel 

heterogeneous exponential servers. The strategy of this paper is to attack the problem of ordered 

heterogeneous servers through application of some ideas that tale traffic theorists have used in 

studies of ordered homogeneous servers. This approach permits solution of the problems of ordered 

heterogeneous servers without necessitating the solution of the detailed multidimensional birth and 

death equations9. 

If the servers are homogeneous, the order of search for an idle server is irrelevant unless one is 

interested in the behavior or states of a particular server instead of only the behavior of the system as 

a whole.  

R. B. Cooper, In this paper, the author extends previous study of cyclic queues to obtain 

waiting time results, for both the exhaustive service model and the gating model. In this paper, the 

Laplace – Stieltjes transforms of the order – of - arrival waiting time distribution functions and for 

the exhaustive service model, the mean waiting time for a unit arriving at a queue, are obtained9.        

In the present paper, we obtain the desired waiting time results without recourse to a 

complicated reformulation of the original analysis based on the complete set of service completion 

points. Rather, to obtain the waiting times at queue i, we use the generating function gi-1 (x1, .......xN), 

to append to the original set of switch points only those service completion points that correspond to 

departure from queue i; and this is sufficient for our waiting time calculations.  

The essence of the method is to calculate the probability generating function of the number of 

units left in queue i by an arbitrary departure from queue i, using only the (known) probability 

generating function of the number of units waiting in the queue i when the server  arrives. The 

Laplace-Stieltjes transform of the order – of –arrival waiting time distribution function for units at 

queue i is then easily obtained by a standard argument. 

The preceding discussion refers mainly to the exhaustive service model, which was discussed 

early. The gating model was shown to be characterized by equations that are essentially the same as 
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those of the exhaustive service model, and was therefore not developed in details. In the present 

paper, the waiting times for gating model will also be discussed. 

R. B. Cooper, and G. Murray*(* The RAND Corporate), In this paper, the authors studied the 

two models of queues served in cyclic order by a single server, the exhaustive service model and the 

gating model. The authors found expression for the mean number of units in a queue at the instant it 

starts service, the mean cycle time, and the Laplace – Stieltjes transform of the cycle time 

distribution function10. 

The authors showed that the gating model is described by state equations only trivially different from 

those of the exhaustive service model. In my opinion, now it is easy to modify the methods and 

results of the detailed analysis of both models.         

COMPUTING ALGORITHM 
The following computing algorithm has been developed to compute the optimal service rates 

and total optimal cost and profit of the system with two priority classes. 

Step 1: begin 

Step 2: input all variables 

Step 3: compute derived variables 

Step 4: compute derivatives 

Step 5: compute functions 

Step 6: t1 ← initial service rate of HPC 

Step 7: t2 ← initial service rate of LPC 

Step 8: iterating initial service rates 

Step 9: while (error=0.0000000001) 

Step 10: compute optimal service rates 

Step 11: compute total optimal cost 

Step 12: compute total optimal profit 

Step 13: end 
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NUMERICAL DEMONSTRATION OF THE RESULTS 
Numerical demonstration is very useful to exhibit the results (performance measures) of the 

model. It focuses on the sensitivity analysis of one parameter relative to other parameters for 

determining the direction of future data-input. Parameters for which the model is relatively sensitive 

would require more attention of researchers engaged in this field, as compared to the parameters for 

which the model is relatively insensitive or less sensitive.  

S. S. Mishra and D. K. Yadav, The paper focused on cost and profit analysis of single – 

server Markovian queuing system with two priority classes. In this paper, functions of total expected 

cost, revenue and profit of the system are constructed and subjected to optimization with respect to 

its service rates of lower and higher priority classes. A computing algorithm is also developed, by the 

authors, to solve the system of non linear equations formed out of the mathematical analysis. 

In this paper the evaluation of total expected profit of both priority classes and of whole 

system has been carried out. In my opinion, it brings the power to produce the desired effect of the 

model close to a realistic situation11. 

G. Vijya Lakshmi, C. Shoba Bindu, Dept. of CSE, JNTUA College of Engineering, Anantpur 

– 515001, India, In this paper the author designed a access network which is congestion free and it is 

also observed that by the help of queuing model, a best traffic is achieved. Good scheduling, 

reliability and congestion free environment is been observed on static as well as random networks12. 

With economic constraints and limited routing capability, the structure of an access network 

is a challenging design. In my opinion it is also important to prevent access network especially as 

voice, video and data traffic for survivability.     

Sangeeta Agarwal, K R Subramaniam & S. Kapoor, This paper is authors attempted to study 

the importance of operation research and various techniques used to improve the operational 

efficiency of the organization. According to authors, organization leaders can make high quality 

decisions. Only if, he or she must have fundamental knowledge of tools and acquire right 

resources13.   

S. S. Mishra (The Dept. of Maths & Statistics, Dr. Ram Manohar Lohia Avadh University, 

Faizabad, U. P., India), In this paper the author computed the total optimal cost of interdependent 

queuing system with controllable arrival rates. A numerical demonstration based on computing 

algorithm and variational effects of the model with the help of the graph have also been presented by 

him14. 
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VARIATIONAL ANALYSIS: 
Validity of any model depends on the variation-effect of one parameter on the other 

parameters involved therein. Here, different types of analyses are being given in fig. 1.as: 

- Cost per Unit Service Rate Vs Total Optimal Cost. 

-Holding Cost Vs Total Optimal Cost. 

- Initial Arrival Rate Vs Total Optimal Cost. 

- Reduced Arrival Rate Vs Total Optimal Cost. 

Finally, we conclude with the remark that present research on optimum performance 

measures of the interdependent queuing model with controllable arrival rates can pave the way for 

future progress of research in various fields including technical applications for the digital 

communication systems and as well as in assessing the performance measures in the form of optimal 

service and cost of computer networking by applying this queuing approach. Such systems are often 

encountered in practice, particularly in service-oriented operations, which brings the efficacy of the 

model closer to a realistic situation. The aim of the numerical demonstration is to study the 

variability of the model that is, to assess the effect of one parameter on the others especially such 

parameters which characterize the performance measures of the model. Numerical demonstration 

carried out with the help of search program is mainly based on the simulations or hypothetical data-

input. In this paper, we have preferred the hypothetical data-input to run the search program 

developed in the paper, which at later stage can also be tested for any real case study. It has also a 

good deal of potential to the applications in other areas such as inventory management, production 

management, computer system etc. 
Table 2: Computation of Total Optimum Cost 

C1 C2 λ0 λ1 n ε R r N μ* TOC 

20 13 5 2 5 0.5 4 2 30 8 40 

22 13 8 3 5 0.5 4 2 30 8 40 

24 15 11 4 5 0.5 4 2 30 8 41 

26 17 14 5 5 0.5 4 2 30 8 41 

28 19 15 6 5 0.5 4 2 30 8 42 

30 21 16 7 5 0.5 4 2 30 8 43 

34 25 18 9 5 0.5 4 2 30 8 45 

36 27 19 10 5 0.5 4 2 30 8 45 

36 29 20 11 5 0.5 4 2 30 8 46 
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Fig.3. Graphic representation of Total Optimum Cost 

Ibtissam Hdhiri and Monia Karouf, In this paper  the authors considered the problem of an 

optimal stochastic impulse control of   non – Markovian Processes when the expression of the cost 

functional integers sensitiveness with respect to the risk. They try to establish the existence of an 

optimal strategy. They prove that impulse control problem could be reduced to an iterative sequence 

of optimal stopping ones15.   

Theorem 4: The strategy δ* is optimal and (Y)t ≤ T is the value function of the risk - sensitive 

impulse control problem, i.e., for any t  ≤ T we have : 

 

Yt(0, 0) = ess sup E[exp { ∫ h ( s, w, Ls δ ) ds - ∑ ψ ( ξn ) Ц [_Tn < T] }Ft] ,at δ Є D   (6) 

 

In particular, Y0(0, 0) = sup J(δ) = J(δ*) , at δ Є D 

Proofs: 

*Thanks to the last proposition Y( υ, ξ) is a cadlag process 

*continuity 

-- Yt( υ, ξ) exp{∫ h ( s, Ls + ξ ) Ц [_s ≥ υ]  ds}) is a Snell envelope of 

 

(exp{∫ h ( s, Ls + ξ ) Ц [_s ≥ υ]  ds} Oi ( υ, ξ) 0 ≤ i ≤ T   

 

  -- Doob-Meyer decomposition implies that: 

Yt( υ, ξ) exp{∫ h ( s, Ls + ξ ) = Mt  - At – Bt ; t ≤ T: 

-- ∆Bt = - ∆Yt. 

 

But,  YT - ( υ, ξ)  = OT - ( υ, ξ), then there is β0 Є U such that: 
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YT  ( υ, ξ) < YT - ( υ, ξ) = exp(-ψ(β0)) Ц [_Tn < T] YT - ( υ, ξ + β0) 

 

Then there exists another r.v β1 Є U such that: 

∆tY (υ, ξ + β1) < 0 and YT - ( υ, ξ) = exp((-ψ(β1)) Ц [_Tn < T] YT - ( υ, ξ + β1) 

... 

... 

YT  - ( υ, ξ) < exp(-nc + γT) 

 

-- The strategy δ* = (τn*, βn* ) n > 0 Є D and it is optimal. 

 

Muhammed El - Taha, Dept. of Mathematics and Statistics, University of Southern Main 96, 

Falmouth Street, Portland, U. S. A.16  

Theorem 5: Consider the G/G/1 stable multi-class multiple vacation model with WCS rules that are 

non-preemptive, regenerative, and within each class, they are service time independent. Also, 

suppose and, and that for each and are asymptotically path wise uncorrelated. The vector of expected 

actual queue delays per customer satisfies the conservation law.  

This theorem can be used to construct conservation laws for waiting time in the system, number of 

customers in the system, and number of customers in the queue using the fact that and Little's 

formula. In this paper, we give two primary results. The first result is “Consider the G/G/1-FIFO 

multi vacation model. Suppose that and, and that and are asymptotically path wise uncorrelated”, 

gives a relation between virtual delay and actual delay for single-server multiple vacation model 

under conditions that are weaker than those given in the literature. This result is extended to multi-

class models where a conservation law is “Consider the G/G/1 stable multi-class multiple vacation 

model with WCS rules that are non-preemptive, regenerative, and within each class, they are service 

time independent. Also, suppose and, and that for each and are asymptotically path wise 

uncorrelated. The vector of expected actual queue delays per customer satisfies the conservation 

law”, which is our second result. We use sample path analysis which allows us to give rigorous 

arguments by focusing on one realization of the stochastic process that describes the system 

evolution. 
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CONCLUSION:  

Really operations research techniques right from inception during World War II are of great 

use for optimum allocation of limited resources. Queuing theory is to distribute service or resources 

to prospective users. Authors of this paper collected and analyzed the techniques by researchers and 

have given model to develop further techniques in managing queues.     
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