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ABSTRACT 
In the present work SnO2 nanoparticles have been successfully prepared by a microwave 

irradiation method. The crystallite size and morphology of SnO2 have been investigated by X-ray 

diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS), and 

transmission electron microscopy (TEM) techniques. The XRD pattern of average particle sizes of 

SnO2 is estimated to be around 14 nm. Furthermore, SnO2 nanoparticles have the crystallite size in 

the range ~11-50 nm, as confirmed by TEM. Results obtained indicate that the microwave-assisted 

method is a promising low temperature, cheap, and fast method for the production of SnO2 

nanostructures. 
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INTRODUCTION 
If a particle size of a semiconductor becomes comparable to the Bohr radius of the exiciton, 

the ratio of the surface atoms to those in the interior increases remarkably, leading to the materials1. 

Two tin and four oxygen atoms per unit cell the ideally stoichiometric SnO2 is an insulator, however, 

the real SnO2 structure contains oxygen vacancies, which make this material an oxygen deficient tin 

(IV) oxide is n-type semiconductor with band gap 3.6 to 3.8 eV which has rutile- type Cassiterite 

structure. As one of the most important classes of materials metal oxide semiconductor are 

presenting themselves in various are of science and technology due to2-3 using a nanocrystalline 

metal oxide as an anode materials has many advantages because of the larger surface are and high 

sensitivity4-5. Tin oxide enjoys a place of pride because of its very high specific capacity (>600 

mAh/g). SnO2 is transparent conducting oxides (TCOS). SnO2 has important physical properties 

such as a high optical transparency in the visible-light high electrical conductivity, low electrical 

resistance, good chemical and thermal stability in various environmental conditions. It is fully 

explored due to its potential applications in catalysis6.There are two obvious approaches to improve 

the gas sensing sensitivity and selectivity of SnO2 one strategy is doping with some rare earth ions or 

noble metals ions such like Y7, La8, Ce9, Pr10, Nd11 and Sm12, another approach is to increase the 

specific surface area because SnO2 is a surface-resistance-control semiconductor material for this 

reason, significant efforts including Nano structured tin oxides have been synthesized by a Varity of 

techniques such as sol-gel13, Ultrasonic15, spray Pyrolysis16, Thermal evaporation17, co-

precipitation18, hydrothermal19, solve thermal20, SnO2  different morphologies have been synthesized 

such as nanoparticles21, Nanowires22, Nanotubes23, Nanoroads24, Nanobelts25 , Nanofibers26, Grass-

like nanostructures27, Core-shell nanostructures28.The studies of the micro-wave heating are even 

complicated by fact that the rate enhancement of chemical reactions core depends on many complex 

factors27 and the effects of several factors The usage of energy electronic devices has been increased 

in recent years due to the rapid growth of smart Phones, Smart watches, Camera, Laptop and 

personal digital assistant (PDAS) electrochemical capacitor has stood for energy storage system. 

 The electrode materials such as Carbon materials, Transition metal oxides and conducting 

polymers play an important role in the performance of super capacitors, Ru28, MnO2 29, Co3O4 30, 

NiO 31, and SnO2 32, are the promising electrode materials due to the high specific capacitance. 

Among various metal oxide nano particles, SnO2 is inexpensive and Non-toxic in nature and Gas 

sensors33, Dye-based solar cells34, Light emitting diodes35, Transistors36 etc.  Such as volume37, 

solvent38, size of the reaction vessel and power level in micro-wave assisted organic synthesis. SnO2 

nanoparticles with sizes less than 30 nm were synthesized by a micro-wave assisted solution process 
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in which amorphous oxy-hydroxy precipitate sn2+ was crystallized by micro-wave heating. Sn2+ 

oxidation otherwise prevailed in the conventional thermal heating process. The micro-wave is highly 

efficient and energy saving in the process, including short reaction time, tiny energy consumption 

and product yield. The microwave assisted method offers to larger reaction volumes , allows faster 

reaction time and removes the need of high demands post synthesis of annealing , huge requirement 

of time and large energy consumption39. Microwave assisted synthesis effects rapid processing 

speed, homogeneous heating and simple control of processing condition and thus attracted much 

attention in last four years. Synthesis SnO2 nanocrystals via microwave assisted process and 

demonstrated that anatase nanocrystals are highly crystalline, low in Ti3+ effect and free of 

aggregation. The Chemical synthesis in a liquid phase through microwave irradiation mainly 

involves dipolar polarization and ionic conduction heating mechanisms. Nature of properties of the 

SnO2 crystals depends on different kind of defects and impurities that are present in structure of 

material. These defects could affect its structural, electronic, optical and/or magnetic properties 40. 

In this paper reports on tin oxide synthesized by micro-wave irradiation method. The effect 

of conventional heating treatment. In this paper we focused a microwave irradiation with 2.45 GHZ 

frequency to obtain SnO and SnO2 after calcinations, nanocrystalline powder in rapid volumetric 

heating which increased reaction rates and shortened the reaction time. 

EXPERIMENTAL 

Material 
All chemical regents were of analytical grade and used without purification. The tin Chloride 

was purchased from (Merck product 98% AR grade) and ethanol solution (Merck product) were 

used to synthesis SnO2 nanoparticles sample was prepared by using double distilled water. 

Synthesis 
A pure tin (II) (SnCl2.2H2O) was used as precursor, and ethanol was used as solvent. 

Solution of Sncl2 in ethanol was prepared by a 0.1 M of solution under continuous stirred at room 

temperature until the transparent and colorless sol was obtained. The pH was maintained at 7 to 8 by 

using ammonia solution and continuously stirred. That sol further washed with ethanol to remove 

NH4+ions. The resulting precipitate was irradiated with house hold micro-wave oven for 5 minutes. 

The radiation frequency was kept between 2.45 GHZ to 1KW between to 1KW with convection 

mode. The finally, a white product was annealed at various temperature. 
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CHARACTERIZATION TECHNIQUES 
The microstructure of the sample was analyzed by X-ray diffraction (XRD) using a Bruker 

AXS D8 Advance instrument and the monochromatic CuK1 wavelength of 1.5406 Å. The average 

crystalline size of the crystallites were evaluated using Scherrer’s formula,  where  is the mean 

crystalline size,  is a grain shape dependent constant (0.9),  is the wavelength of the incident beam,  

is a Bragg reflection angle, and  is the full width at half maximum (FWHM) of the main diffraction 

peak. The sample morphology was observed by scanning electron microscopy (SEM), using a JEOL 

5600LV microscope at an accelerating voltage of 10 kV. High resolution transmission electron 

microscopy (HRTEM) and selected-area electron diffraction (SAED) was recorded on a Tecnai G20-

stwin using an accelerating voltage of 200 kV.  

RESULTS AND DISCUSSION 

X- Ray Diffraction (XRD) 
 The XRD pattern of tin oxide nanoparticles after microwave treatment and different 

annealing (or) sintering temperature (at 300°C - 600°C) showed the formation of SnO2 nanocrystals 

due to the microwave radiation which changed the hydroxyl group into the oxide group. It was 

oxidant that the different matched perfectly with the SnO2 tetragonal structure. When the sample was 

sintered at 300°C - 600°C, the particles were oxidized at SnO2. The sintered samples at 300° C-600° 

C showed typical SnO2 tetragonal phase which could be attributed to following miller indices (110), 

(101), (220), and (211). 

 

 

 
 

 

 

 

 

  

  

 
 

Figure No. 1: “XRD patterns of SnO2 nanoparticles.” 
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The obtained XRD patterns of tin oxide (SnO2) nanoparticles were in good agreement with 

the standard JCPDS card no 88-0287.  

No significant variations were observed while increasing sintering temperature from 300°C-

600°C, but the lattice parameter tended to slightly decrease. Such behavior might be attributed to the 

complete dehydroxylation of the material suggesting the presence of hydroxyl group in the tin oxide 

crystallites sintered at 300°C-600°C. 

 

 Scanning Electron Microscopy (SEM) 
 

 

 

 

  

  

 

  

 

 
  

 

 

  

 

 

 

 

 
 

 

 

Figure No. 2: “SEM images of SnO2 nanoparticles.” 

The Morphology of the synthesized nanocomposite was analyzed by scanning electron 

microscope. A typical micrograph of Samples (a), (b) and (c) are shown in fig.3. SEM images 

also show that the synthesized samples are agglomerated and smaller crystallites joint together. 

A B 

C 
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Therefore the temperature distribution is uniform and is transformed the materials inside, 

making a volatile effect followed by vigorous growth of the gases to form SnO2 with good 

polycrystalline nature. It was observed that for each annealing temperature, the synthesized 

nanoparticles uniform surface without any significant defects and cracks. Surface of the particles 

consisted spherical particles fused each other. 

 

Energy Dispersive Spectrum (EDS) 

 

 

 

  

 

 

 

 

 
 

 

  

  

 

   

 

  

  
Figure No. 3:  “EDS spectrum of SnO2 nanoparticles.” 

The spectrum of the synthesized nanocomposite was analyzed by energy dispersive spectrum 

(EDS). A typical spectrum of sample (a), Sample (b) and sample (c) in shown fig. This spectrum is 

performed to investigate the element composition of SnO2 nanostructures. EDS analysis confirms 

that the presence of SnO2 nanostructures. The emission peak such as O and Sn observed in EDS 

Spectrum shows the presence of tin and oxygen element and confirms the Stoichiometry of 

nanoparticles. 
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Transmission Electron Microscopy (TEM) 
 

  

 

 

 

 

  

  

 

 

 

 

 

 

 

 

  

 

 

 
 

Figure No. 4: “TEM images of SnO2 nanoparticles.” 

 

The Morphologies of the tin oxide nanoparticles were analyzed using TEM micrographs (fig 

3.4). The SnO2 particles showed needle and spherical shaped morphology with different 

magnification such as 50 and 100 nm. The estimated particle size well matched with XRD 

measurements. Thus the larger particles are composed of many smaller particles. After annealing the 

sample, it showed that the mainly spherical shaped particles with sizes in range from 50 nm-100 nm 

have formed (fig 3.b, c). It appears that the spherical shape breaks in to the smaller nanoparticles 

annealing at 600° C for 12h in an air atmosphere. 

 

(a) 

(c) 
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CONCLUSION 
 Pure SnO2 nanopowders with tetragonal phase were successfully synthesized by microwave 

irradiation technique and no other impurity was observed it’s confirmed by XRD. SEM morphology 

of nanoparticles showed good agglomeration with small crystallite joint together and EDS analysis 

confirms that the formation of SnO2 nanostructures. TEM image reveals clearly the formation of 

tetragonal face nanorods when the SnO2 sample annealed at 600 °C. The obtained SnO2 product is 

potential material for optoelectronic device applications. 
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