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ABSTRACT:

The solution of fractional partial differential equations is obtained by using the homotopy
analysis method. We also discussed the convergence analysis of the homotopy analysis method
about the considered fractional partial differential equation.
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INTRODUCTION OF HOMOTOPY ANALYSIS METHOD:

This method is proposed by Liao in 1992*° The following differential equations are
considered by us for this method,

N, [u (xt)]=0,i=12,..,n 1)

Where N; considered as a nonlinear operators, (x,t) and u, (x,t) are pair of independent variables

and unknown functions respectively.

The so-called zero-order deformation equations defined by

(1-q) L[goi (X,t,50) = U, (x,t)] =qc, N, [¢), (x,t,;q)] ®

Whereq is an embedding parameter which lies between[O,l], c,and Lare nonzero auxiliary

functions and auxiliary linear operator respectively, initial guesses of u, (x,t)are u;,(x,t)and

¢ (x.t,;q) are unknown functions.

We have freedom to choose auxiliary objects such as ¢, and L in HAM, which is main importance of

this method.
Whenq =0 and g =1we get by (2),
¢ (%1,;0)=u,y(xt) and ¢ (xt;1)=u(xt)

By Taylor’s series expansion

¢ (X t,;0)=Uu, (xt)+ 3 u, (%) g"
(1) =t (1) 301 (1) ]
Where
1 ami t,:
ui,m(xat):{m.%:l
| (@)

If we choose the auxiliary parameterc, the auxiliary functions, the auxiliary linear operator and

initial guesses properly than the series equation (3) converges at q =1
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¢ (X t51) =u o (1) + D U (x.t)

m=1 (5)
This must be one of the solutions of the original nonlinear equations.

If we differentiate equation (2) m times with respect to the embedding parameter g and the setting

g =0 and finally dividing them by 1 than we get the so-called m*"Order deformation equations
like this

L i ,t “— AmYima vt zhiRim :
[ul,m(x ) X Uv (X ):I ) (U’ )) (6)

Where

|1 "INl (xt:0)
i, (ui,m—l)) (m—l)' aqm—l

)
X IS characteristic function.

FRACTIONAL DERIVATIVE ACCORDING TO RIEMANN-LIOUVILLE:

Wy de r(n+1)
)= ) =T a)

n—-a

(8)
Where, Gamma possesses a standard definite. Inverse fractional differential operator notation is J

SOLUTION OF FRACTIONAL KDV EQUATIONBY USING THE HOMOTOPY
ANALYSIS METHOD:[0<a <1]
Let following be the KDV equation [9]

oyt _
ot” OX 9)

With initial condition u(x,0) = 3x

First of all we want to define linear and nonlinear terms like as

9(xt,q) _36415(x,t;q)2
ot” OX

N(4(xt:q)) = (10)
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“¢(x.t;q)
ot” (11)

Assume initial approximation

L(g(x,t;q)) =

Uy (X,1) = 6x +tx°
By using the procedure of Homotopy Analysis Method, the zeroth-order deformation equations for

(1) can be written as

(L-a)[g(xta)-u ()] =ac,N[g(xt:0)] 12)
Forq = Oand g = 1, it can be written as

P(x1;0)=uy (xt) ,o(xt;1)=u(xt)

The mth order deformation equations can be written as

L (U (Xt) = Uy (X,1)) = CR (U y ) 13)
o 2

WhereR  (u,)= 0 u;“‘l —Baum‘l
ot OX (14)

The approximate solution of equation (9) can be written as

u(xt) =u0(x,t)+ium(x,t)

“ (15)
Where U, (x,t) = ZpUns (% 1) + L R, (U )] (16)
If we take m=1 in (14),
_ 0"y, _38u02 . (2

=X t>7* —B54x — 54tx* —12t*x®
ot” OX r2-a)

Uy (x,t)=¢, D[R, (up)]

=¢,D*| X @) o g4y _sare —12t%%°
r2-a)

242
=c{“x3—54x L psae— 1 g _gpe 1t

R.(Uo)

_— - 1 —12X t2+a:|
2 T+ a) r2+a) I3+ a) a7

If we take two terms approximation than we get
u(x,t)=uy (X t)+u (X, t)+...cc.

242
t l ta _54X2 l 1+a _ 3

=3x+tx* +¢, XL\ 54x —t*
2 I'l+a) Ir+a) I'+a) (18)

If we take some special case,
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242

a=1 g=1, u(x,t):3x+tx2+C{X2t

x® —BAxt — 27x°t* — 2x3t3}

]
I
I
I

Jr 5 iz

2.2 1
%, u(x,t)=3x+tx2+c{%x3—108xit2 gee Lp Bl }

CONVERGENCE OF HOMOTOPY ANALYSIS METHOD (HAM):

Theorem:-As long as the series equation (15) is convergent where u_(x,t) is governed by the m™

order deformation equation (13) under (14) must be the solution of (9) °.

0

Proof: Let the series u(x,t)=u, (x,t)+> u,(xt) be convergent.

m=1

Then limu, (x,t)=0

m—> (19
Now we have
Z[um (x,t)—;(mum_l(x,t)]
m=1
=u + (U, —u))+ (U, —u,)+...+(Uu,, -u ,)+U,-u,,)
= un

0

S0 > [y (X, t) = 2y (X)) ] = limu, (x,1) =0
m=1 " (20)

According to the definition of linear operators, we can write

M

mi}[ ~ Tnlns (X,1) ] = L{ l[um(x,t)—zmum_l(x,t)]}L(0)=o

3
I

From the above equation and equation (13)

Ry(Un1)=0, (+¢#0) 21)

From (14),
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:iaaum-l _ia(um_l) 22)

From (21) and (22), proof of the theorem is completed.
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