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ABSTRACT 

We examined the sublethal effect of Bacillus thuringiensis (Bt) on the biocontrol efficiency of 
Habrobracon hebetor during combined biocontrol of stored grain pest, Corcyra cephalonica. 
Parasitization and mortality of the host by parasitoid was investigated under various Bt diets and 
parasitoid combinations. Bt treatments reduced parasitization but increased the mortality. Acute Bt 
treatment at LC50 showed the highest mortality (73.0 ± 3.00) with least relative parasitization (34.6 
±3.36). H. hebetor tended to maximize profitability and showed tradeoff between oviposition and 
paralyzation. The parasitoid’s enhanced attack response to vigorous less contaminated hosts, the 
ability to recognize and withhold oviposition on contaminated hosts, and the opportunity offered due 
to host’s weakened defense mechanisms seem to play an important role. Bt is known to affect 
various aspects of Lepidoptera-parasitoid and assessing the risks associated with the use of Bt 
products and their potential sublethal effect on non-target organisms, including biological control 
agents, is a priority. The study will help to evaluate and assess the use of combined biocontrol, 
agents to formulate effective strategies for the efficient management of stored product pests like C. 
cephalonica. 
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INTRODUCTION 
Pests and pathogens damage over 40% of the world’s crop yield and insects alone contribute 

to nearly half of that damage1,2. In the scenario of global warming, climate change and regular pest 

outbreaks 3 the emerging challenge is not only to manage pests but also to minimize the damage to 

the environment. In India and other developing countries, most of which lie in the warmer latitudes, 

the problem is aggravated by the highly favorable environment for the insect pests and an ever 

increasing and expanding human population4,5. Stored-grain pyralid moths, such as Corcyra 

cephalonica Stainton, 1866, (Lepidoptera: Pyralidae)6, are notorious pests as its larval stage is 

responsible for severe damage to stored grains and a wide range of other food commodities in 

tropical and subtropical regions of the world. 7,8,9,10.  

 The challenges of pesticide resistance, secondary pest outbreaks, risk to natural enemies and 

non-target species, environment pollution due to pesticide residues and public health concerns have 

forced us to look for other alternatives to conventional insecticides11,12,13. The urgent need to develop 

safe alternatives for the protection of grain and grain products has led to the methods of integrated 

pest management (IPM). It promotes the deliberate use of natural regulatory mechanisms, like 

natural enemies to suppress and regulate a pest population14,15 and minimizes the use of synthetic 

pesticides12. Biological control for pest management utilizes natural enemies of pest and therefore a 

multifaceted approach using a combination of mutually compatible biocontrol agents is a desirable 

and efficient strategy.  

Parasitoids are very effective biocontrol agent of many pests. Habrobracon hebetor Say 

(1836) (Hymenoptera: Braconidae)16, is one such cosmopolitan ectoparasitoid which parasitizes the 

larval stage of several stored-grain pyralid moths17,18. Gravid female H. hebetor stings and paralyzes 

host larvae and lay varying numbers of eggs on the surface or near it 19,20. Its considerable range of 

host species, high reproductive rates and short generation time not only makes it a good biocontrol 

agent but also an important subject of various bio-control researches on the Lepidoptera-parasitoid 

system 21,22,23,24. These qualities make it a very potent natural biocontrol agent against C. cephalonica 
20,24.   

Greathead (1995)25 has suggested integrating biological and chemical control in various 

ways, one of which is using selective insecticides and natural enemies26. The microbial insecticide, 

Bacillus thuringiensis Berliner (Bt), is a Gram-positive spore-forming bacteria found in soil, 

occupying more than 90% of the biopesticide market27,28. As a successful eco-friendly biopesticide 

against major lepidopteran pests, it has great potential in IPM programmes29,30. Insects belonging to 

the orders Coleoptera, Diptera and Lepidoptera have been found to be susceptible to the parasporal 
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crystalline inclusions, δ-endotoxins, produced during the sporulation process31,32,33. Involving the 

combination of Bt and a parasitoid in an integrated biocontrol strategy has mostly been 

successful29,34,35,36. Normally H. hebetor paralyzes far more number of host larvae than needed for 

oviposition/ parasitization. It returns afterward and oviposits on only a few paralyzed larvae37. 

Unparasitized paralyzed larvae may continue to live for nearly a month before death. 

In this study, we investigated the effects of the combination of Bt with H. Hebetor on the 

mortality and extent of parasitization of C. Cephalonica under various Bt diets. Although various 

studies have been done on combining Bt with the parasitoid, the effect of Bt in a Lepidoptera-

parasitoid system is yet to be fully understood38,39,40. Moreover, emphasis should be paid to the 

sublethal effects of Bt on the behavior and the biology of parasitoids and predators41. Since host 

quality strongly influences the preferences of the parasitoid, the ability to successfully identify and 

determine host quality and profitability is of prime importance for the fitness of the gregarious 

idiobiont ectoparasitoid20,42,43. This will help to assess and evaluate the suitability of integrating 

biological agents with biopesticides, like Bt, and to develop appropriate strategies for the control of 

stored grain pest like C. Cephalonica 

 

MATERIALS AND METHODS 
All insect cultures, assays, and experiments were conducted at 27 ± 2oC, 70 ± 10% relative 

humidity and 12:12 L:D photoperiod. Culture methods followed the procedure as described by Singh 

(2004)44. 

Rearing of the pest 
 Eggs of C. cephalonica were obtained from the Central Integrated Pest Management Centre 

(CIPMC), Gorakhpur and allowed to develop in coarsely ground mixed grain diet in large plastic 

containers of size 45cm × 25cm × 15cm 24,30. Emerging males and females were paired in a beaker 

(250ml) covered with a black muslin cloth. The collected eggs were again used for culture. After 3-4 

generations, full-grown larvae were used for culture of the parasitoid H. hebetor. Larvae were also 

reared in mixed grain diets fortified with Bt at LC10 and LC25.  4th instar larvae were used in 

mortality experiments45,46. 

Rearing of the parasitoid  

Adults of H. Hebetor were collected from the CIPMC, Gorakhpur.  Males and females were paired 

in a beaker (250ml) having 10 full grown 5th instar larvae of C. cephalonica, covered with a fine 

muslin cloth24,30. 30% honey solution was provided as food47,48,49,50. After parasitization, hosts were 
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kept separately for further development of the parasitoid. The new generation of parasitoids was 

paired again similarly, and the third generation the adults were used for the parasitization and 

mortality experiments24,30,45,46.   

Estimation of lethal concentrations and preparation of diet 
Dipel DF (B. thuringiensis var. kurstaki, strain ABTS-351, 32 MIU g-1 [millions of 

International Units per gram], a commercial formulation based on B. thuringiensis was used for the 

lethal concentration assays and mortality experiments. Estimation of lethal concentrations parameters 

of Bt on Corcyra cephalonica followed the method used by Oluwafemi et al (2009)40. Larval 

mortality was recorded after 24, 48 and 72 hours of initial inoculation. Lethal concentration for 48 

hours was used in further experiments40. The LC50, LC25 and LC10 values (with 95% confidence 

limits) of Bt on C. cephalonica 4th instar larvae were 36.31 (29.953 – 45.704), 12.52 (10.46 – 14.81) 

and 4.80 (3.64-5.99) mg/ mL respectively. LC50, LC25, and LC10 Bt diets were prepared using these 

concentrations. 

Effect of combining Bt and Parasitoid  on Corcyra Cephalonica Larval Mortality 
Five treatments with varying combination of Bt and parasitoid were carried out using ten 4th 

instar C. cephalonica larvae in 500mL beakers with 10g diet following the method by Mathew et al. 

(2018)45,46. It was covered with a muslin cloth and done in 10 replicates each. An untreated setup 

was also set up to correct mortality. Varying treatments were: 

Bt treatment. Larvae were placed with Bt treated diet at LC50. 

Parasitoid treatment. Larvae were placed with untreated diet then after 4 hours exposed to gravid 

female parasitoid for 24 hours. 

Bt-parasitoid combined treatment. Larvae were placed with Bt LC50 -treated diet then after 4 hours 

exposed to gravid female parasitoid for 24 hours. 

Bt LC10 reared larvae-parasitoid combined treatment. Larvae reared on Bt LC10 -treated diet 

were placed with Bt LC10 –diet for 4 hours and then exposed to gravid female parasitoid for 24 

hours. 

Bt LC25 reared larvae-parasitoid combined treatment. Larvae reared on Bt LC25 -treated diet 

were placed with Bt LC25 –diet for 4 hours and then after 4 hours exposed to gravid female parasitoid 

for 24 hours. 

After 24 hours observations were done for the number of paralyzed larvae40. Paralyzed host 

larvae were observed until the emergence of parasitoid larvae to ascertain the number of oviposited 

or parasitized larvae and the rest were counted for mortality. 
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Statistical Analysis 
Any mortality in untreated setup was used to ascertain corrected mortality (%) = (P- P0) / 

(100−P0) × 100, where P is the percent mortality of treated insects; P0 is the percent mortality of 

insects in the untreated control51.  

The LC values were calculated using POLO - Plus 2.0 program (Leora Software, 2005) and 

Probit Analysis Statistical Method. Parasitism and mortality data of different treatments were 

analyzed by analysis of variance (One Way ANOVA) and the means were tested for separation with 

Tukey's HSD using SPSS Statistics version 20.0 (SPSS Inc., Chicago, IL, USA) statistical analysis 

software. 

RESULTS 
All combinations of Bt and H. hebetor resulted in high mortality. All paralyzed host larvae 

died. Significantly high mortality was observed when parasitoid was allowed to attack host larvae 

treated with Bt LC50 fortified diet (37.0 ±2.13, p< .001). A synergistic effect was seen as the 

mortality was significantly higher than either parasitoid or Bt when used alone46. The extent of 

ovipositing was affected by Bt and showed significant variation among various Bt-parasitoid 

combinations (F(3,36)= 10.93, p< .001). Ovipositing was highest on host larvae reared on Bt LC10 diet 

(40.9 ±2.35, p< .05) followed by LC25 and those exposed to 4 hrs in Bt LC50. The proportion of 

oviposited larvae among paralyzed or dead ones was significantly reduced by Bt treatments (F(3,36)= 

39.91, p< .001), especially when host larvae was acutely intoxicated in LC50 (34.6 ±3.36, p< .05), 

whereas, larvae reared on low doses of Bt showed significantly higher ratio.  

 

 

 

Table No. 1.  Percentage mortality and oviposition of Corcyra Cephalonica 4th instar larvae 

after exposure to parasitoid and Bt–parasitoid combined treatments. 

Treatments Mortality± SE Oviposited ± SE 
Oviposited among 

paralyzed± SE 

P (control) 37.0 ± 2.13a 28.0 ±2.50a 74.8 ±3.17d 

Bt–P (host larvae exposed 

4hrs in LC50) 
73.0 ± 3.00b 25.0 ±1.67a 34.6 ±3.36a 

Bt–P (host larvae reared on  66.0 ± 1.63b 40.9 ±2.35b 62.0 ±3.25c 
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Means ± SE followed by different letters in each column are significantly different (P<0.05) using Tukey’s B 

test.; Bt = Bacillus thuringiensis; P = parasitoid (control) (Habrobracon hebetor); Bt–P = Bt–parasitoid 

(combined treatment). 

 

 
Fig No. 1. Effect of Bt on the relative proportion of mortality and oviposition of C. cephalonica larvae by H. 

hebetor 

 

 

LC10 diet) 

Bt–P (host larvae reared on  

LC25 diet) 
64.0 ± 3.06b 31.0 ±1.39a 48.6 ±2.05b 
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Fig No. 2. Effect of Bt on the extent of oviposition by H. hebetor on parasitized C. cephalonica larvae. 

 

DISCUSSION 
H. hebetor preferably parasitizes later instars of lepidopteran hosts as they are more profitable 

in terms of ease of locating and as better host for developing larvae. It has excellent flying and 

searching abilities and relatively long lifespan allowing for a wider dispersal in the release area and 

the potential for establishing a functional population on severely pest infested sites, thus making only 

an initial single inoculation enough52.  H. hebetor is known to withhold or reduce ovipositing when 

the larval stages are not preferred or the quality of host is low53. The parasitoid tends to paralyze 

significantly more larvae than it can parasitize and oviposit. Host larvae fed on Bt-treated diets may 

not be similarly intoxicated, therefore, profitability may vary leading to host selection by the 

parasitoid. The lower ratio of oviposition in Bt-treated hosts points to this, implying that the most 

profitable ones were parasitized. 

Depending upon the quality of conditions and timing of interaction, the interactions between 

parasitoids and Bt can range from synergistic to competitive54,55 several studies have shown slower 

development in Bt infected larvae which makes them sluggish and more susceptible to attack by 

parasitoids56,57. Furthermore, ingestion of a sublethal dose of Bt may change host attributes that may 

result in host-mediated effects that can influence foraging and ovipositing priorities of the 

parasitoids55. Several studies have shown the ability of female parasitoids to discriminate between 

Bt-treated and untreated larvae, by parasitizing mostly the latter. Experiments on Bt plants have 
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shown that parasitoids may avoid sublethally affected Bt-fed host larvae in which their offspring is 

unlikely to develop58,59,60. Choice and no choice tests done by Erb et al (2001)55 seemed to suggest an 

effect of decreased host vigor. Weseloh (1980)61 found that parasitoid attacked vigorous host rather 

than less active ones, as host movement and contact with the host integument were the attack 

eliciting factors. Bt-treated host larvae may not be similarly intoxicated, therefore, vigor may vary 

leading to host selection by the parasitoid. However, this alone does not explain the lower rate of 

parasitism among paralyzed Bt infected host larvae in this experiment.  

Parasitoids are sensitive to changes in host quality, therefore, the altered host defense 

behavior of a weakened Bt infected larvae may result in a higher rate of attack by parasitoid60,62. 

Since H. hebetor can discriminate between varying larval profitability, it may prefer hosts where less 

time and energy is expended while searching. This may lead to higher rate of attack and paralyzation 

of host larvae. Moreover, the parasitoid may withhold or reduce the number of eggs43,53. Therefore a 

combination of inherent nature of attacking less infected vigorous larvae and a new opportunity to 

maximize paralyzation of weakened Bt-infected larvae may lead to higher mortality. Larvae 

paralyzed by H. hebetor do not survive long and a prior Bt infection is more likely to accelerate 

death. H. hebetor showed marked preference towards later instars (4th and 5th) than earlier stages in 

choice tests46,63. These early instars being more active, move deep into the infested food in contrast 

to the later instars64. Bt is more lethal to early host instars than the later ones and thus can not only 

complement but also synergize the lethal effect. The host mortality was greater when a combination 

of Bt and H. hebetor was used than either used alone. This synergistic effect seen in the mortality 

was in agreement with Chilcutt and Tabashnik (1997b)65, Oluwafemi et al. (2009)40 and Ebrahimi et 

al (2012)66. Navon (1993)67 reported on several studies on the effect of Bt on parasitoids of 

susceptible insects species, but the effects have been negligible. Studies have also shown the effect 

of Bt on life history parameters of parasitoid29,55. H. hebetor had lower fecundity when reared on Bt 

infected host. This may be due to insufficient resources for parasitoid larval growth in a dying Bt 

contaminated host larvae40,68,69.  

Sublethal effects of Bt on the behavior and the biology of natural enemies of pest needs to be 

emphasized as host quality strongly influences the preferences of the parasitoid. A combined 

treatment integrating Bt with parasitoid for pest control can yield better results70 partly due to the 

synergic effect involved in mortality. Stored grain pests, like C. cephalonica, the rice moth, can be 

controlled by integrating parasitoid H. hebetor 24,71, which attack the late host instars, and Bt72, which 

is more toxic to early instars. Therefore, Bt can be safely used with parasitoid in combined biological 

control strategies against lepidopteran pests including C. Cephalonica73. Bt is known to affect 

various aspects of the Lepidoptera-parasitoid system and therefore, assessing the risks associated 
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with the use of Bt products and their potential to affect non-target organisms, including biological 

control agents system, should be emphasized. The aspects of parasitoid choices and resulting larval 

mortality in Bt-contaminated hosts should be considered in an IPM program, to utilize and conserve 

parasitoid populations effectively. 
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