

Research Article

Available online www.ijsrr.org ISSN: 2279–0543

International Journal of Scientific Research and Reviews

Dominator Chromatic Number on Various Classes of Graphs

A.Vijayalekshmi^{*} and S.Anusha

Department of Mathematics, S. T. Hindu College, Nagercoil-629002, Tamilnadu, India. **Email:**vijimath.a@gmail.com

ABSTRACT

Let G be a graph. A dominator coloring of G is a proper coloring in which every vertex of G dominates atleast one color class. The dominator chromatic number of G is denoted by $\chi_d(G)$ and is defined by the minimum number of colors needed in a dominator coloring of G. In this paper, we obtain dominator chromatic number on various classes of graphs.

Mathematics Subject Classification : 05C15, 05C69

KEYWORDS : Dominator chromatic number, banana graph ,book graph, stacked book graph, dutch wind mill graph, prism graph, crossed prism graph, sunflower graph.

*Corresponding Author

Reg .No:11506,Research scholar, Department of Mathematics,

S.T. Hindu college, Nagercoil, 629002

Affiliated to Manonmaniam Sundaranar University,

Abishekapatti, Tirunelveli-627012, Tamilnadu, India.

Email:vijimath.a@gmail.com

INTRODUCTION

All graphs considered in this paper are finite, undirected graphs and we follow standard definition of graph theory as found in [1]. Let G = (V, E) be a graph. The open neighborhood N(v) of a vertex $v \in V(G)$ consists of the set of all vertices adjacent to v. The closed neighborhood of v is $N[v] = N(v)\cup\{v\}$. An induced subgraph G[S], where S of a graph G is a graph formed from a subset S of the vertices of G and all of the edges connecting pairs of vertices in S. A graph in which every pair of vertices is joined by exactly one edge is called complete graph. A complete bi partite graph is a graph whose vertices can be partitioned into two subsets V₁and V₂ such that no edge has both end points in the same subset, and each vertex of V₁ is connected to every vertex of V₂ and vice -verse. A star graph S_n is the complete bipartite graph K_{1,n-1} (A tree with one internal node and n-1leaves).

The path and cycle of order n are denoted by P_n and C_n respectively. For any two graphs G and H, we define the cartesian product, denoted by $G \times H$, to be the graph with vertex set $V(G) \times V(H)$ and edges between two vertices (u_1, v_1) and (u_2, v_2) iff either $u_1=u_2$ and $v_1v_2 \in E(H)$ or $u_1u_2 \in E(G)$ and $v_1=v_2$. A subset S of V is called a dominating set if every vertex in V-S is adjacent to atleast one vertex in S. The dominating set is minimal dominating set if no proper subset of S is a dominating set of G. The domination number γ is the minimum cardinality taken over all minimal dominating set of G. A γ -set is any minimal dominating set with cardinality γ .

A proper coloring of G is an assignment of colors to the vertices of G such that adjacent vertices have different colors. The minimum number of colors for which there exists a proper coloring of G is called chromatic number of G and is denoted by $\chi(G)$. A dominator coloring of G is a proper coloring of G in which every vertex of G dominates atleast one color class. The dominator chromatic number is denoted by $\chi_d(G)$ and is defined by the minimum number of colors needed in a dominator coloring of G .This concept was introduced by Ralucca Michelle Gera in 2006[2].

In a proper coloring C of G, a color class of C is a set consisting of all those vertices assigned the same color. Let C¹ be a minimal dominator coloring of G. We say that a color class $c_i \in C^1$ is called a non-dominated color class (n-d color class) if it is not dominated by any vertex of G. These color classes are also called repeated color classes. A banana graph $B_{m,n}$ is a graph obtained by connecting one leaf of each m copies of an n-star graph with a single root vertex that is distinct from all the stars. The book graph B_m is defined as the graph Cartesian product $P_2 \times K_{1,m-1}$. The stacked book graph $SB_{m,n}$ is the

generalization of the book graph to stacked pages . The dutch windmill graph D_m^n is the graph obtained by taking n copies of the cycle graph C_n with a vertex in common .The prism graph Y_n is a graph consisting of a Cartesian product $P_2 \times C_n$, where P_2 is a path on two vertices and C_n is the cycle graph on n vertices. An n-crossed prism G_n , $n \ge 4$ is a graph obtained by taking two disjoint cycles C_1 and C_2 of order 2n and adding edges $u_i v_{i+1}$ and $u_{i+1} v_i$ for i=1,3,---(n-1). A sunflower graph Sf_n , $n \ge 4$ is a graph obtained from wheel graph $W_n = K_1 + C_n$ with each edge $u_i u_{i+1}$ of the cycle C_n can be added to two new edges $u_i v_i$ and $u_{i+1} v_i$.

The dominator chromatic number of paths, cycles were found in [2] and [3].

We have the following observations from [2] and [3].

Theorem A [2] The path
$$P_n$$
 of order $n \ge 2$ has $\chi_d(P_n) = \begin{cases} \left\lceil \frac{n}{3} \right\rceil + 1 & \text{if } n = 2,3,4,5,7 \\ \left\lceil \frac{n}{3} \right\rceil + 2 & \text{otherwise} \end{cases}$
Theorem B [3] The cycle C_n has $\chi_d(C_n) = \begin{cases} \left\lceil \frac{n}{3} \right\rceil & \text{if } n = 4 \\ \left\lceil \frac{n}{3} \right\rceil + 1 & \text{if } n = 5 \\ \left\lceil \frac{n}{3} \right\rceil + 2 & \text{otherwise} \end{cases}$

In this paper, we obtain the least value for dominator chromatic number on various classes of graphs.

Theorem 1 For the banana graph $B_{m,n}$, $\chi_d(B_{m,n})=m+2$

Proof: Let $B_{m,n}$ be the banana graph .The vertex set of the graph $V(B_{m,n}) = \{u\} \cup \{v_{ij} / \frac{1 \le i \le m}{1 \le j \le n}\}$. That is $B_{m,n}$ consist of one vertex has degree m and m vertices of degree 2 and m vertices of degree (n-1) and m(n-2) vertices of degree 1 respectively. We assign m distinct colors to the vertices of degree (n-1) and the color say (m+1) is assigned to the vertices of degree 1 and degree 2 and the color say (m+1) is assigned to the vertices of degree 1 and degree 2 and the color say (m+1) is assigned to the vertices of degree 1 and degree 2 and the color say (m+1) is assigned to the vertices of degree 1 and degree 2 and the color say (m+1) is assigned to the vertex u. Thus $\chi_d(B_{m,n}) = m+2$.

Fig 1 (B_{4,5}) $\chi_d(B_{4,5}) = 6$.

4

4

Theorem 2 For the book graph B_m , $\chi_d(B_m) = 4$

Proof:Let $P_2 \times K_{1,m}$ be the book graph with vertex set $\{v_1, v_2, v_3, \dots, v_{2m+1}, v_{2m+2}\}$, where (v_1, v_2) and (v_i, v_j) i=3,5,7----,2m+1 and j=4,6,8,----,2m+2 form the pages of B_m . We assign colors 1 and 2 to v_1 and v_2 repectively, assign the colors 3 and 4 to the set of vertices $\{v_3, v_5, v_7, \dots, v_{2m+1}\}$ and the set of vertices $\{v_4, v_6, v_8, \dots, v_{2m+2}\}$ respectively. Thus $\chi_d(B_m) = 4$.

Fig 2.(B₄) $\chi_d(B_4) = 4$

Consider B₄

Theorem 3 For any stacked book graph $SB_{m,n}$, $\chi_d(SB_{m,n})=n+2$

Proof: Let $SB_{m,n} = P_n \times K_{1,m}$ be the stacked book graph and let $V(SB_{m,n}) = \left\{ V_{ij} / \underset{1 \le j \le m+1}{1 \le j \le m+1} \right\}$ such that B_i isomorphic to the vertex induced subgraph $v_{1i}, v_{2i}, v_{3i}, \dots, v_{ni}$. We assign n distinct colors 1,2,3, ..., n to $v_{11}, v_{21}, v_{31}, \dots, v_{n1}$ and colors n+1 and n+2 to the set of vertices v_{ij} , $1 \le j \le m+1$ and i=1,3,5----, n if n is odd and the set of vertices $v_{ij}, 1 \le j \le m+1$ and i=2,4,6----, n if n is even respective. Thus $\chi_d(SB_{m,n})=n+2$.

Consider SB_{3,4}

 $\chi_d(SB_{3,4})=6$

Theorem 4 For the dutch wind mill graph D_m^n , $\chi_d(D_m^n) = n \left[\frac{m-3}{3} \right] + 3$

Proof: Consider D_m^n formed by n copies of the cycle c_m with $V(D_m^n) = \{v_{ij}/_{j=1,2,3,----m}^{i=1,2,3,-----m}\}$. For each i=1,2,3,---,n { $v_{i1},v_{i2},v_{i3},----,v_{im}$ } be the vertices of i- th copy of cycle C_m and $v_{11}=v_{21}=v_{31}=----==v_{n1}$ is a common vertex. We assign color 1 and 2 to a common vertex v_{11} and the set of vertices { v_{i2} , v_{im} }, i=1,2,3,---,n and we assign n χ_d (C_{m-3}) distinct colors to remaining vertices { $v_{i3},v_{i4},v_{i5},-----$, v_{im-1} }, i=1,2,3,----,n. Finally we need n $\chi_d(C_{m-3}) + 1$ colors to need dominator coloring. so χ_{td} (D_m^n)=n χ_d (C_{m-3}) +1 = $n \left[\frac{m-3}{3}\right] + 2 + 1 = n \left[\frac{m-3}{3}\right] + 3$.

Thus $\chi_d(D_m^n) = n \left[\frac{m-3}{3} \right] + 3.$

 $\chi_{td}(D_{12}^3)=12$

Theorem 5 For the prism graph Y_n , $\chi_d(Y_n) = \begin{cases} \left[\frac{n}{2}\right] + 2 & \text{if } n \equiv 0,3 \pmod{4} \\ \left[\frac{n}{2}\right] + 3 & \text{if } n \equiv 1,2 \pmod{4} \end{cases}$

Proof: Let Y_n be a prism graph and $V(Y_n) = \{u_{1,u_2,u_3,\dots,u_n}, v_{1,v_2,v_3,\dots,v_n}\}$. We consider two cases.

Case (1) When $n \equiv 0$, 3(mod 4). We have two subcases.

Subcase(1.1) When $n \equiv 0 \pmod{4}$, since $N(u_i) \cap N(v_{i+2}) = \emptyset$ -----(*) for every i=1,2,---n,

 $i \equiv 0 \pmod{n}$ and $\sum d(v_i) \equiv 0 \pmod{4}$. Let D={ $u_1, u_5, u_9, \dots u_{n-3}, v_3, v_7, \dots v_{n-1}$ } be the vertices and satisfies equation (*) and $|D| = \frac{n}{2}$, we assign $\frac{n}{2}$ distinct colors to the vertices in D and assigned two repeated colors say $\frac{n}{2} + 1$ and $\frac{n}{2} + 2$ to the remaining vertices such that adjacent vertices receives different colors. So $\chi_d(Y_n) = \frac{n}{2} + 2$.

Subcase (1.2) When $n \equiv 3 \pmod{4}$, since $\sum d(v_i) \equiv 1 \pmod{4}$, $\frac{n}{2}$ vertices of $V(Y_n)$ satisfying equation(*) and the vertices v_{n-1}, v_n does not satisfies equation (*). Assign $\left[\frac{n}{2}\right]$ distinct colors to the vertices satisfying equation (*) and v_{n-1} and by subcase(1.1), we get $\left[\frac{n}{2}\right] + 2$. So $\chi_d(Y_n) = \left[\frac{n}{2}\right] + 2$.

Case (2) When $\equiv 1$, 2(mod4). We have two subcases.

Subcase(2.1) When $n \equiv 1 \pmod{4}$, since $\sum d(v_i) \equiv 3 \pmod{4}$, and subcase(1.2) $\left\lfloor \frac{n}{2} \right\rfloor$ vertices satisfying equation (*) and two vertices say u_{n-1} and v_n does not satisfies equation (*). By applying the same coloring as in subcase (1.2), we get a proper coloring except the vertices u_{n-1} and v_n . So we use two distinct colors say $\left\lfloor \frac{n}{2} \right\rfloor$ and $\left\lfloor \frac{n}{2} \right\rfloor + 1$ to the vertices u_{n-1} and v_n respectively and we assigned two repeated colors say $\left(\frac{n}{2}+2\right)$ and $\left(-\frac{n}{2}+3\right)$ to the remaining vertices such that adjacent vertices receives different colors .So $\chi_d(Y_n) = \left\lfloor \frac{n}{2} \right\rfloor + 3$.

Subcase(2.2) When $n \equiv 2 \pmod{4}$, since $\sum d(v_i) \equiv 2 \pmod{4}$, $(\frac{n}{2}-1)$ vertices satisfying equation (*) and 4 vertices does not satisfies equation (*). Among the 4 vertices u_{n-1}, u_{n-2}, v_n , v_{n-1} , two vertices say, u_{n-1}, v_{n-1} receive two distinct colors and remaining two vertices u_{n-2}, v_n have received the already used repeated colors. So $\chi_d(Y_n) = \left[\frac{n}{2}\right] + 3$.

Thus
$$\chi_d(Y_n) = \begin{cases} \left[\frac{n}{2}\right] + 2 & \text{if } n \equiv 0,3 \pmod{4} \\ \left[\frac{n}{2}\right] + 3 & \text{if } n \equiv 1,2 \pmod{4} \end{cases}$$

$\chi_d(Y_{10})=8$

Theorem 6 For n-crossed prism graph G_n , $\chi_d(G_n) = \begin{cases} n+2 & \text{if } n \text{ is even} \\ n+3 & \text{if } n \text{ is odd} \end{cases}$

Proof: Let G_n be an n-crossed prism graph and it is a graph obtained by taking two disjoint cycles C_1 and C_2 of order 2n and adding edges u_iv_{i+1} and $u_{i+1}v_i$ for i=1,3,---(n-1). let $V(C_1)=\{u_1,u_2,u_3,----,u_{2n}\}$ and $V(C_2)=\{v_1,v_2,v_3,----,v_{2n}\}$. We consider two cases.

Case(1)When n is even. We assign n distinct colors to the vertices { $v_1, v_5, v_9, \dots, v_{2n-3}, u_2, u_6, u_{10}, \dots, u_{2n-2}$ } and assigned two repeated colours say n+1 and n+2 to the remaining vertices such that adjacent vertices received different colors. So $\chi_d(G_n) = n+2$.

Case(2) When n is odd. We assign n+1 distinct colors to the vertices { $v_1, v_5, v_9, \dots, v_{2n-1}, u_2, u_6, u_{10}, \dots, u_{2n}$ } and assigned two repeated colours say n+2 and n+3 to the remaining vertices such that adjacent vertices received different colors. So $\chi_d(G_n) = n+3$.

 $\chi_d(G_7)=10.$

Theorem 7 Any sunflower graph Sf_n , $\chi_{td}(Sf_n) = \left[\frac{n}{2}\right] + 2$

Proof: Let Sf_n , $n \ge 4$ be a sunflower graph and it is a graph obtained from wheel graph $W_n = K_1 + C_n$ with each edge $u_i u_{i+1}$ of the cycle C_n can be added to two new edges $u_i v_i$ and $u_{i+1} v_i$. Let $V(Sf_n) = \{u, u_1, u_2, u_3, \dots, u_n, v_1, v_2, v_3, \dots, v_n\}$, where deg u=n, deg $u_i=5$ and deg $v_i=2$ for all i=1,2,3----, n. We consider two cases.

Case(1) When n is even. We allot $\frac{n}{2}$ distinct colors to the vertices { $u_1, u_3, u_5, \dots, u_{n-1}$ }, the color $\frac{n}{2} + 1$ to the vertices u and v_i , i=1,2,---,n and $\frac{n}{2} + 2$ to the vertices { $u_2, u_4, u_6, \dots, u_n$ }, we got dominator coloring. So $\chi_d(Sf_n) = \frac{n}{2} + 2$.

Case(2) When n is odd. We allot $\left\lceil \frac{n}{2} \right\rceil$ distinct colors to the vertices { $u_{1,u_{3,u_{5,\dots,u_{n-2}}}, u_{n-2,u_{n-1}}$ }, and the remaining coloring as in case(1) we got a dominator coloring. So $\chi_d(Sf_n) = \left\lceil \frac{n}{2} \right\rceil + 2$.

Fig 7 (Sf₈)

 $\chi_{td}(Sf_8)=6$

REFERENCES:

- 1. Harrary F, Graph Theory, Addition- wesley Reading, Mass, 1969.
- 2. Gera-R, Rasmussen-c and Horton-S, Dominator coloring and safe clique partitions, congr. Numer 2006;181: 19-32.
- 3. Gera-R M, On dominator coloring in graphs, Graph Theory Notes N.Y.LII 2007; 25-30.
- 4. Dedetniemi SM, Hedetniemi S.T ,Mcrae A.A ,Blair J.R.S,Dominator coloring of graphs, 2006 (pre print).
- 5. Terasa W.Haynes, Stephen T.Hedetniemi ,Peter J.Slater, Domination in Graphs, Marcel Dekker, New York, 1998.
- 6. Suganya P ,Mary Jeya Jothi R, Dominator chromatic number of some graph classes International Journal of Computational and Applied Mathematics, 2017;12: 458-463.
- Manjula T& Rajeswari R, Dominator coloring of prism graph, Applied Mathematical Sciences, 2015; 9(38):1889-1894.