Some Characterizations of Strictly Convex 2- Normed Spaces

Singh Hans Kumar

Department of Physics, Baboo Bhuneshwar Prasad Degree College, Jai prakash University, Chapra, Bihar, India, E Mail - hksingh.hiht @ gmail.com

Abstract

: The concept 2 normed space was introduced by S. Gahler. After Daminni and A.White introduced the ideas of strictly 2 convex 2 -normed space. They gave several important result on strictly convex 2-nornmed spaces. This paper consist of several characterization of strictly convex 2 normed Spaces.

KEYWORDS:

2 normed space, Strictly convex, 2 dimensional analog.

*CORRESPONDING AUTHOR:

Dr. Hans Kumar Singh

Department of Physics
Baboo Bhuneshwar Prasad Degree College,Jai prakash University, Chapra,Bihar
E Mail - hksingh.hiht @gmail.com

INTRODUCTION:

Let L , be a linear space of dimension greater than L and $\|\cdot \cdot\|$ a real valued function on L XL which satisfies the following four conditions:

1. $\|\mathrm{a}, \mathrm{b}\|=0$ if and only if a and b are linearly dependent,
2. $\|a, b\|=\|b, a\|$,
3. $\|a, \beta b\|=\|\beta\|\|a, b\|$, when β is real,
4. $\quad\|a, b+c\| \leq\|a, b\|+\|a, c\|$.
$\|\cdot:\|$ is called a 2- norm on L and (I, $\|\cdot\|$) linear 2- normed space.
The 2- norm is a non-negative function.
With respect to the definition of the 2-norm the notion of Linear 2- normed space is a 2-dimensional analog to the notion of normed linear space. A normed linear space is called strictly convex if $\|x+y\|=\|x\|+\|y\|$ and $\|x\|=\|y\|=1$ imply that $x=y$.

For non-zero vectors $\mathrm{a}, \mathrm{b} \in \mathrm{L}$, let $\mathrm{V}(\mathrm{a}, \mathrm{b})$ denote the subspace of L generated by a and b . whenever the notation $\mathrm{V}(\mathrm{a}, \mathrm{b})$ is used, it will be understood that a and b are non-zero vectors. A linear 2 normed space ($L,\|\cdot\|$) said to be strictly convex if $\|a+b, c\|+\|b, c\|,\|a, c\|=\|b, c\|=1$ and $\mathrm{c} \notin \mathrm{V}(\mathrm{a}, \mathrm{b})$ imply that $\mathrm{a}=\mathrm{b}$.

If c is a fixed non-zero element of L , let $\mathrm{V}(\mathrm{c})$ denote the linear subspace of L generated c and let L , be the quotient space $L / V(c)$. For $a \in L$, let a_{c} represent the equivalence class of a with respect to $\mathrm{V}(\mathrm{c})$. Le is a vector space with addition given by $\mathrm{a}_{\mathrm{c}}+\mathrm{b}_{\mathrm{c}}=(\mathrm{a}+\mathrm{b})_{\mathrm{c}}$ and scalar multiplication by $\alpha a_{c}=(\alpha a)_{c}$. For arbitrary $a, b \in L$ which satisfy $a_{c}=b_{c}$, the conditions.
$\|\mathrm{a}, \mathrm{c}\|-\|\mathrm{b}, \mathrm{c}\|\|\mathrm{a}-\mathrm{b}, \mathrm{c}\|=0$, and thus, $\|\mathrm{a}, \mathrm{c}\|-\|\mathrm{b}, \mathrm{c}\|$. Therefore, the real-valued functions $\|\cdot\|_{\mathrm{c}}$ on L_{c} given by $\left\|\mathrm{a}_{\mathrm{c}}\right\|_{\mathrm{c}}=\|\mathrm{a}, \mathrm{c}\|$ is well-normed.

Lemma:

$\|\cdot\|_{\mathrm{c}}$ is norm on L_{c}.

Proof:

1. $\left\|\mathrm{a}_{\mathrm{c}}\right\|_{\mathrm{c}}=0$ if and only if $\|a, \mathrm{c}\|=0$ i.e., if and only if $\mathrm{a}_{\mathrm{c}}=0_{\mathrm{c}}$
2. $\left\|\alpha a_{c}\right\|_{c}=\left\|(\alpha a)_{c}\right\|_{c}=\|\alpha, a, c\|=|\alpha\||a, c\|=|\alpha|\| a, c\|=|\alpha|\| a c \|$, when α is real.
3. $\quad\left\|a_{c}+b_{c}\right\|_{c}=\left\|(a+b)_{c}\right\|_{c}=\|a+b, c\| \leq\|a, c\|+\|b, c\|=\left\|a_{c}\right\|_{c}+\left\|b_{c}\right\|_{c}$.

Theorem :

For a linear 2-normed space $(L,\|\cdot \cdot\|)$, the following are equivalent :

1. $(\mathrm{L},\|\cdot\|)$ is strictly convex.
2. For every non-zero $\mathrm{c} \in \mathrm{L},\left(\mathrm{L}_{\mathrm{c}},\|\cdot\|\right)$ is strictly convex.
3. $\|a+b, c\|=a, b\|+\| b, c \|$ and $c \in V(a, b)$ imply that $a=\alpha a$, for some $\alpha>0$.
4. $\quad\|\mathrm{a}-d, \mathrm{c}\|=\alpha\|\mathrm{a}-\mathrm{b}, \mathrm{c}\|,\|\mathrm{b}-\mathrm{d}, \mathrm{c}\|=(a-\alpha)\|\mathrm{a}-\mathrm{b}, \mathrm{c}\| \alpha \in(0,1)$, and $\mathrm{c} \in \mathrm{V}(\mathrm{a}-\mathrm{d}, \mathrm{b}-\mathrm{d})$ imply that $d=(1-\epsilon) a+\alpha b$.

Proof:

1. Let $(\mathrm{L},\|\cdot \because\|)$ be strictly convex and let c be a fixed non-zero element of L . If $\left\|\mathrm{a}_{\mathrm{c}}+\mathrm{b}_{\mathrm{c}}\right\|_{\mathrm{c}}=\left\|\mathrm{a}_{\mathrm{c}}\right\|_{\mathrm{c}}+\left\|\mathrm{b}_{\mathrm{c}}\right\|$ and $\left\|\mathrm{a}_{\mathrm{c}}\right\|_{\mathrm{c}}=\left\|\mathrm{b}_{\mathrm{c}}\right\|_{\mathrm{c}}=\mathrm{I}$, then $\|\mathrm{a}+\mathrm{b}, \mathrm{c}\|=\|\mathrm{a}, \mathrm{c}\|+\|\mathrm{b}, \mathrm{c}\|$ and $\|\mathrm{a}, \mathrm{c}\|=\|\mathrm{b}, \mathrm{c}\|=1$. For the case $\mathrm{c} \in \mathrm{V}(\mathrm{a}, \mathrm{b})$ and α and β then $0_{\mathrm{c}}+c_{c}=\alpha \mathrm{a}_{\mathrm{c}}+\beta b_{c}$ or $\alpha \mathrm{a}=-\beta b_{c}$. From $\left\|\mathrm{a}_{\mathrm{c}}\right\|_{\mathrm{c}}=\left\|\mathrm{b}_{\mathrm{c}}\right\|_{\mathrm{c}}=\mathrm{I}$, it follows that $\alpha=\beta$ If $\alpha=\beta$ then $\mathrm{c}=\alpha(\mathrm{a}+\mathrm{b})$ which contradicts $\|\mathrm{a}+\mathrm{b}, \mathrm{c}\|=\left\|\mathrm{a}_{\mathrm{c}}+\mathrm{b}_{\mathrm{c}}\right\|_{\mathrm{c}}=2$. Therefore, $\alpha=-\square \square$ and hence $\mathrm{a}_{\mathrm{c}}=\mathrm{b}_{\mathrm{c}}$. Thus $\left(\mathrm{L}_{\mathrm{c}},\|\cdot\|\right.$ is strictly convex.
2. Assume condition 2 holds. For $c \in V(a, b)$, let $\|a+b, c\|=\|a, c\|+\|b, c\|$, i.e., $\left\|\mathrm{a}_{\mathrm{c}}+\mathrm{b}_{\mathrm{c}}\right\|_{\mathrm{c}}=\left\|\mathrm{a}_{\mathrm{c}}\right\|_{\mathrm{c}}+\left\|\mathrm{b}_{\mathrm{c}}\right\|_{\mathrm{c}}$ By the strict convexity of ($\mathrm{L}_{\mathrm{c}}\|\cdot\| \mathrm{e}$), it follows that $\mathrm{b}_{\mathrm{c}}=\alpha \mathrm{a}_{\mathrm{c}}$, some $\alpha>0$. Finally, $c \in V(a, b)$ implies that $b=\alpha$ and condition 3 is satisfied.
3. Assume condition 3. From $\|a-d, c\|=\alpha\|a-b, c\|=1-\alpha\|a-b, c\|, c \in V(a-d, b-d)$ and $\alpha \in(0,1)$, it follows that $(1-\alpha)\|a-b, c\|=\|b-d, c\|=\beta\|a-d, c\|=\alpha \beta\|a-b, c\|$ implies that $\mathrm{d}=(1-\alpha) \alpha \mathrm{a}+\mathrm{b}$. Therefore, condition 4 is established.
4. Finally, assume condition 4 and let $\|a+b, c\|=\|a, c\|+\|b, c\|,\|a, c\|=\|b, c\|=1$, where $\mathrm{c} \in \mathrm{V}(\mathrm{a}, \mathrm{b})$. By condition $4,0=\mathrm{a}-\mathrm{b}$, i.e. $\mathrm{a}=\mathrm{b}$. Therefore $(\mathrm{L},\|\cdot\|)$ is strictly convex and the theorem is proven.

If L is a linear space of dimension greater then 1 , let $\mathrm{B}^{\prime}{ }_{1}$ be the set of all formal expression $\sum a_{i} \times b_{i}$, where $\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}(\mathrm{i}=1, \ldots ., \mathrm{m})$ vectors in L . Let - be the equivalent relation on $\mathrm{B}{ }_{1}$ defined by
$\sum_{i=1}^{m} a_{i} \times b_{i}=\sum_{i=1}^{m} a_{i} \times b_{i}$
if for arbitrary linear functions f and g on L,
$\sum_{i=1}^{m}\left|\begin{array}{ll}f\left(a_{i}\right) & g\left(a_{i}\right) \\ f\left(b_{i}\right) & b\left(b_{i}\right)\end{array}\right|=\sum_{i=1}^{m}\left|\begin{array}{ll}f\left(a_{i}^{1}\right) & g\left(a_{i}^{1}\right) \\ f\left(b_{i}^{1}\right) & g\left(b_{i}^{1}\right)\end{array}\right|$
Let B_{1} be the quotient space $B_{1} /-$. The elements of B_{1} are called bivectors over L and the elements of B_{1}^{\prime} belonging to a bivector are called representatives of this bivector. The bivector with the representative $\sum_{i=1}^{m} a_{i} \times b_{i}$ will also be denoted by $\partial\left(\sum_{i=1}^{m} a_{i} \times b_{i}\right)$. If a bivector has a representative of the form $\sum_{i=1}^{m} a_{i} \times b_{i}=a_{i} \times b_{i}$, then it is said to be simple. Only in the case where L has dimension less than or equal to 3 does every bivector over L turn out to be simple. The space B_{1} is a linear space with $\left(\sum_{i=1}^{m} a_{i} \times b_{i}\right)+\left(\sum_{i=1}^{m} a_{i+m} \times b_{i+m}\right)=\left(\sum_{i=1}^{m+n} a_{i} \times b_{i}\right)$ and $\beta \partial\left(\sum_{i=1}^{m} a_{i} \times b_{i}\right)=\partial\left(\sum_{i=1}^{m} a_{i} \times \beta b_{i}\right)$, when β is real. If $\|\cdot\|$ is a norm on B_{L}, then $\|\mathrm{a}, \mathrm{b}\|=\|(\mathrm{a} \times \mathrm{b})\|$ defines a $2-$ norm on L . There is an example which shows that for every $2-$ norm $\|\cdot\|$ on L, there need not exist a norm $\|\cdot\|$ on B_{1} which satisfies $\|(a \times b)\|-\|a b\|$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{L}$ if bivector L , i.e., if L has dimension less than or equal to 3 , then for every $2-$ norm $\|:\|$ on L there is a norm $\|\cdot\|$ on B_{1} with $\|(a \times b)\|-\|a b\|$ for all $a, b \in L$.

Theorem :

Let L be a linear space of dimension greater than $1,\|\cdot\|$, be a norm on B_{1}, and $\|\cdot \cdot\|$ be a $2-$ norm on L with $\|(a \times b)\|=\|a, b\|$ for all $a, b \in L$. If $\left(B_{1},\|\cdot\|\right)$ is strictly convex, then $(L,\|\cdot\|)$ is strictly convex. If the dimension of L is less than or equal to 3 and $(L,\|\cdot\|)$ is strictly convex, then $\left(B_{1},\|\cdot\|\right)$ is strictly convex.

Proof:

1. Suppose $\left(B_{1},\|\cdot\|\right)$ is strictly convex 1 or $c \in V(a, b)$, assume $\|a+b, c\|=\|a, c\|+\|b, c\|$ and $\|\mathrm{a}, \mathrm{c}\|=\|\mathrm{b}, \mathrm{c}\|=1$. Then, $\|(\mathrm{a} \times \mathrm{c})+(\mathrm{b} \times \mathrm{c})\|=\|(\mathrm{a} \times \mathrm{c})\|+\|(\mathrm{b} \times \mathrm{c})\|$ and $\|*(\mathrm{a} \times \mathrm{c})\|=*(\mathrm{~b} \times \mathrm{c}) \|=1$.

Since $\left(B_{1},\|\cdot\|\right)$ is strictly convex, it follows that $*(a \times c) \|=*(b \times c)$. This implies that $a-b \in V(c)$. Therefore, $a=b$, since $c \notin V(a, b)$.
2. Suppose L has dimension less than or equal to 3 and ($\mathrm{L},\|\cdot\|$) is strictly convex. Let $\|* 1+* 2\|=\|* 1\|+\| * 2$ and $\|* 1=\| * 2 \|=1$. Hence, there exist vectors $a, b, c \in L$ with $* 1=*(\mathrm{a} \times \mathrm{c})$ and $* 2=*(\mathrm{~b} \times \mathrm{c})$. Thus, $\|\mathrm{a}+\mathrm{b}, \mathrm{c}\|=\|\mathrm{a}, \mathrm{c}\|+\|\mathrm{b}, \mathrm{c}\|$ and $\|\mathrm{a}, \mathrm{c}\|=\|\mathrm{b}, \mathrm{c}\|=1$. If $\mathrm{c} \in \mathrm{V}(\mathrm{a}, \mathrm{b})$, these equations imply that $\mathrm{c}=\alpha(\mathrm{a}-\mathrm{b})$ for some real, and hence $*_{1}=* 2$. If $\mathrm{c} \notin \mathrm{V}(\mathrm{a}, \mathrm{b})$, then strict convexity of $(\mathrm{L},\|\cdot \cdot\|)$ implies that $\mathrm{a}=\mathrm{b}$, i.e. $* 1=* 2$.
If L is a 2 -dimenstional linear space, then B_{1} is a 1-dimenstional normal linear space and every 1dimenstional normed space is trivally strictly convex. Therefore, every 2 -dimensional linear 2 -normed space is strictly convex. Also, it follows that there are linear 2 -normed space which are not strictly convex.

Theorem :

Let $(\mathrm{L},\|\cdot \cdot\|)$ be a linear $2-$ normed space and $\left(\mathrm{L}^{\prime},\|\cdot\|\right)$ be a linear normed space.

Proof:

1. If $(\mathrm{L},\|\cdot \cdot\|)$ is strictly convex, c is a fixed non-zero-element of L , and f is a function from L into L which satisfies $\|f(a)-f(b), c\|=\|a-b\|$ for every $a, b \in L$, then the function g_{c} from L ' into L_{c}, defined by $g_{c}(a)=[-f(a)]_{c}$, is linear.

If $(\mathrm{L},\|\cdot\|)$ is strictly convex, c is a fixed non-zero element of L , and f a function from L into L ' satisfying $\|f(a)-f(b)\|=\|a-b, c\|$, for every $a, \in b L$, then the function g from L into L ', defined by $g(a)=f(a)-f(0)$, is linear.

Let $(\mathrm{L},\|\cdot \cdot\|)$ be strictly convex and $\mathrm{f}, \mathrm{c}, \mathrm{g}_{\mathrm{c}}$ be as given in statement 1 . By a known theorem, $\left(L_{c},\|\cdot\|_{c}\right)$ is strictly convex. For every $a, b \in L^{\prime}$,
$\left\|g_{c}(a)-g_{c}(b)\right\|_{c} \quad=\left\|[f(a)-f(b)]_{c}\right\|_{c}$
$=\|f(\mathrm{a})-\mathrm{f}(\mathrm{b}), \mathrm{c}\|$
$=\|a-b\|$.
If follows that g_{c} is linear.
2. Let $\left(L^{\prime},\|\cdot\|\right)$ be strictly convex and f, c, g be as given in statement 2 . Then $g(0)=0$ and for every a, be L.
$\left\|g_{c}(a)-g(b)\right\|=\|f(a)-f(b)=\| a-b, c \|$
Thus, for $a, b \in L$ which satisfy $a_{c}-b_{c}$, it follows that $\|g(a)-g(b)\|=0$ and the function g_{c} from L_{c} into L^{\prime}, given by $g_{c}\left(a_{c}\right)-g(a)$ is well-defined F or any
$\mathrm{a}, \mathrm{b} \in, \mathrm{L}=\left\|\mathrm{g}_{\mathrm{c}}\left(\mathrm{a}_{\mathrm{c}}\right)-\mathrm{g}_{\mathrm{c}}\left(\mathrm{b}_{\mathrm{c}}\right)\right\|=\|\mathrm{g}(\mathrm{a})\|-\mathrm{g}(\mathrm{b}) \|$

$$
\begin{aligned}
& =\|a-b, c\| \\
& =\left\|a_{c}-b_{c}\right\|_{c}
\end{aligned}
$$

Since $g_{c}\left(0_{c}\right)=g(0)=0$, it implies that g, is linear. For any $a, b \in L$ and any real number $\mathrm{g}(\mathrm{a})=\mathrm{g}_{\mathrm{c}}\left\lfloor(\alpha \mathrm{a})_{\mathrm{c}}\right\rfloor=\alpha \mathrm{g}_{\mathrm{c}}\left(\mathrm{a}_{\mathrm{c}}\right)$, and $\mathrm{g}(\mathrm{a}+\mathrm{b})=\mathrm{g}_{\mathrm{c}}\left(\mathrm{a}_{\mathrm{c}}+\mathrm{b}_{\mathrm{c}}\right)=\mathrm{g}_{\mathrm{c}}\left(\mathrm{a}_{\mathrm{c}}\right)+\mathrm{g}_{\mathrm{c}}\left(\mathrm{b}_{\mathrm{c}}\right)=\mathrm{g}(\mathrm{a})+\mathrm{g}(\mathrm{b})$

Therefore, g is linear.

COROLLARY:

Let $(L,\|\cdot\|$) be a strictly convex linear $2-$ normed space, c be a fixed non-zero element of L, and f be a function from L into L which satisfies $f(0)=0$ and $\|f(a)-f(b), c\|=\|a-b, c\|$ for every $a, b \in L$ Then the function g_{c} from L into L_{c}, defined by $g_{c}(a)=\left[f(a)_{c}\right]$, is linear.

Proof:

Since $(\mathrm{L},\|\cdot \cdot\|)$ is strictly convex it implies that $\left(\mathrm{L}_{\mathrm{c}},\|\cdot\|\right)$ is strictly convex. For any $\mathrm{a}, \mathrm{b} \in \mathrm{L}$,

$$
\begin{aligned}
\left\|\mathrm{g}_{\mathrm{c}}(\mathrm{a})-\mathrm{g}_{\mathrm{c}}(\mathrm{~b})\right\|_{\mathrm{c}} & =\left\|[\mathrm{f}(\mathrm{a})-\mathrm{f}(\mathrm{~b})]_{\mathrm{c}}\right\|_{\mathrm{c}} \\
& =\|\mathrm{f}(\mathrm{a})-\mathrm{f}(\mathrm{~b}), \mathrm{c}\| \\
& =\mathrm{a}-\mathrm{b}, \mathrm{c} \|
\end{aligned}
$$

From part 2 of the proceeding theorem, it follows the g_{c} in linear

Definition:

If M and N are linear subspaces of L , a bilinear form F on $\mathrm{M} \times \mathrm{N}$ is said to be bounded if there is a number $K>0$ for which $|F(a, b)| \leq K\|a, b\|$ for every $(a, b) \in M \times N$

The norm of $\mathrm{F},\|\mathrm{F}\|$ is defined by
$\|F\|=\operatorname{in} f\{K:|F(a, b)| \leq K\|a, b\|\}$ for every $(a, b) \in M \times N$.

Theorem:

The following are equivalent :
A. $(\mathrm{L},\|\cdot\|)$ is strictly convex.
B. If $\mathrm{c} \neq 0, \mathrm{~F}$ is a non-zero bounded bilinear form on $\mathrm{L} \times \mathrm{V}(\mathrm{c}),\|\mathrm{x}, \mathrm{c}\|=\|\mathrm{y}, \mathrm{c}\|=1$ and $\mathrm{F}(\mathrm{x}, \mathrm{c})=\mathrm{F}(\mathrm{y}, \mathrm{c})=\|\mathrm{F}\|$, then either $\mathrm{x}=\mathrm{y}$ or $\|\mathrm{x}, \mathrm{y}\| \neq 0$ and $c= \pm \frac{1}{\|x, y\|^{(x-y)}}$

Proof:

A. Assume $(\mathrm{L},\|\|$,$) is strictly convex. Let \mathrm{c} \neq 0$ and F be a non-zero bounded bilinear form on $L \times V(c)$. If
$F(x, c)=F(y, c)=\|F\| \quad$ and $\quad\|x, c\|=\|y, c\|=1, \quad$ then $\quad 2=\frac{1}{\|F\|} F(x+y, c) \leq\|x+y, c\|$ $\leq\|x, c\|+\|y, c\|=2$. Therefore $\|x+y, c\|=2$. If $x \neq y$, then $c \in V(x, y)$ since otherwise the strict convexity of L would yield $x=y$. Hence, there are real numbers α and β for which $c=\alpha x+\beta y$.

Then, $1=\|x, c\|=\|\alpha x+\beta y\|=|\beta|\|x, y\|$. Similarly $|\alpha|\|x, y\|=1$.
Therefore, $\|\mathrm{x}, \mathrm{y}\| \neq 0$ and $|\alpha|=|\beta|=\frac{1}{\|\mathrm{x}, \mathrm{y}\|}$ Since $\|\mathrm{x}+\mathrm{y}, \mathrm{c}\|=2$, it follows that $= \pm \frac{1}{\|\mathrm{x}, \mathrm{y}\|^{(\mathrm{x}-\mathrm{y})}}$
B. Assume condition 2 holds and let $\|\mathrm{a}, \mathrm{c}\|=\|\mathrm{b}, \mathrm{c}\|=1, \mathrm{a} \neq \mathrm{b}$ and $\mathrm{c} \notin \mathrm{V}(\mathrm{a}, \mathrm{b})$.

Then, $\|a+b, c\| \leq\|a, c\|+\|b, c\|=2$. If $\|a+b, c\|=2$, there is a bounded bilinear form F defined on $\mathrm{L} \times \mathrm{V}(\mathrm{c})$ such that $\|\mathrm{F}\|=1$ and $\mathrm{F}\left(\frac{\mathrm{a}+\mathrm{b}}{2}, c\right)=\left\|\frac{\mathrm{a}+\mathrm{b}}{2}, c\right\|=1$

Note that $\mathrm{F}(\mathrm{a}, \mathrm{c}) \leq|\mathrm{F}(\mathrm{a}, \mathrm{c})| \leq\|\mathrm{F}\| \mathrm{a}, \mathrm{c} \|=1$. If $\mathrm{F}(\mathrm{a}, \mathrm{c})=1$, then since $a \neq \frac{\mathrm{a}+\mathrm{b}}{2}$, condition 2
with $\mathrm{x}=\mathrm{a}$ and $y=\frac{\mathrm{a}+\mathrm{b}}{2}$ implies that $\mathrm{c} \in \mathrm{V}(\mathrm{a}, \mathrm{b})$ which is impossible.
Thus $\mathrm{F}(\mathrm{a}, \mathrm{c})<1$. A similar argument shows that $\mathrm{F}(\mathrm{a}, \mathrm{c})<1$ also. Therefore,
$1=\frac{1}{2} \mathrm{~F}(\mathrm{a}+\mathrm{b}, \mathrm{c})=\frac{1}{2} \mathrm{~F}(\mathrm{a}+\mathrm{c})+\frac{1}{2} \mathrm{~F}(\mathrm{~b}, \mathrm{c})<1$
Hence, $\|\mathrm{a}+\mathrm{b}, \mathrm{c}\|<2$ and $(\mathrm{L},\|\|$,$) is strictly convex.$

REFERENCES

1. Sundaresan.K, On strictly convex spaces, J. Madras University, 1957; 295-298.
2. Diminnie.C, and White.A.G, Remarks on Strict convexity and Betweeness Postulates Demonstration Mathematics,1981; 16(1): 209-217.
3. Clarkson.J.A, Uniformly convex spaces, Trans. Amer Math Soc. 1936; 40: 396-414.
4. Diminnie.C, and White.A.G, Strict convexity in topological vector spaces, Math Japonica, 1977; 22: 49-56.
5. Diminnie.C, et. al. Remarks on strictly convex and strictly 2-convex 2- normed spaces, Math Nachr, 1979; 88: 363-372.
6. Diminnie.C, and White.A.G, Strict convexity Conditions for seminorms, Math.Japonica, 1980; 6, 24(5): 489-493.
7. Cho.Y.J, et. al., Strictly 2-convex linear 2- normed spaces, Math Japonica, .1982; 26: 495-498.
8. Cho.Y.J, et.al, Strictly 2-convex linear 2- normed spaces, Math Japonica. 1982; 27: 609-612.
9. Malceski.A and Malceski.R, $\mathrm{L}^{\mathrm{p}}(\mu)$ as a 2-normed space, Matematicki bilten,2005; 29 (XL): 7176.
10. Malceski.R and Anevska.K, Strictly convex in quasi 2-pre-Hilbert space, IJSIMR, 2014; 2(7): 668-674.
11. Malceski.R,, Nasteski.Lj, Nacevska .B, and Huseini,A, About the strictly convex and uniformly convex normed and 2-normed spaces, IJSIMR, 2014; 2 (6): 603-610.
12. Ehret.R, Linear 2-normed Spaces, Doctoral Diss., Saint Louis Univ., 1969.
13. Freese.R.W, Choand.Y.J, Kim.S.S, Strictly 2-convex linear 2-normed spaces, J. Korean Math. Soc 1992; 29: 391-400.
14. Malčeski.A, As a n-normed space, Matematički bilten,1997; 21 (XXI): 103-110.
15. Malcheski, S, Malcheski, R., Anevska, K., 2-semi-norms and 2-semi-inner product, International Journal of Mathematical Analysis, 2014; 8(52): 2601 - 2609.
16. Malcheski, S., Malcheski, A., Anevska, K., Malcheski R.: Another characterization's • of 2-preHilbert Space, IJSIMR, 2015; 3(2): 45-54
