

Research Article Available

Available online www.ijsrr.org ISSN: 2279–0543

International Journal of Scientific Research and Reviews

Some Characterizations of Strictly Convex 2- Normed Spaces

Singh Hans Kumar

Department of Physics, Baboo Bhuneshwar Prasad Degree College, Jai prakash University, Chapra, Bihar, India, E Mail - <u>hksingh.hiht@gmail.com</u>

ABSTRACT:

The concept 2 normed space was introduced by S. Gahler. After Daminni and A.White introduced the ideas of strictly 2 convex 2 –normed space. They gave several important result on strictly convex 2-normed spaces. This paper consist of several characterization of strictly convex 2 normed Spaces.

KEYWORDS:

2 normed space, Strictly convex, 2 dimensional analog.

*CORRESPONDING AUTHOR:

Dr. Hans Kumar Singh

Department of Physics

Baboo Bhuneshwar Prasad Degree College, Jai prakash University, Chapra, Bihar

E Mail - <u>hksingh.hiht@gmail.com</u>

INTRODUCTION:

Let L, be a linear space of dimension greater than L and $\|\cdot\|$ a real valued function on L XL which satisfies the following four conditions:

1. ||a,b||=0 if and only if a and b are linearly dependent,

2. || a,b ||=||b, a ||,

- 3. $||a,\beta b|| = ||\beta|| ||a,b||$, when β is real,
- 4. $||a,b+c|| \le ||a,b|| + ||a,c||$.

 $\| \cdot \|$ is called a 2- norm on L and (I, $\| \cdot \|$) linear 2- normed space.

The 2- norm is a non-negative function.

With respect to the definition of the 2-norm the notion of Linear 2- normed space is a 2- dimensional analog to the notion of normed linear space. A normed linear space is called strictly convex if ||x + y|| = ||x|| + ||y|| and ||x|| = ||y|| = 1 imply that x = y.

For non-zero vectors $a, b \in L$, let V (a, b) denote the subspace of L generated by a and b. whenever the notation V (a, b) is used, it will be understood that a and b are non-zero vectors. A linear 2 – normed space (L, $\|\cdot\|$) said to be strictly convex if ||a+b,c||+|| b,c||,||a,c||=||b,c||=1 and $c \notin V(a,b)$ imply that a = b.

If c is a fixed non-zero element of L, let V(c) denote the linear subspace of L generated c and let L, be the quotient space L/V(c). For $a \in L$, let a_c represent the equivalence class of a with respect to V(c). Le is a vector space with addition given by $a_c + b_c = (a + b)_c$ and scalar multiplication by $\alpha a_c = (\alpha a)_c$. For arbitrary $a, b \in L$ which satisfy $a_c = b_c$, the conditions.

||a,c|| - ||b,c|| ||a-b,c|| = 0, and thus, ||a,c|| - ||b,c||. Therefore, the real-valued functions $||\cdot||_c$ on L_c given by $||a_c||_c = ||a,c||$ is well-normed.

Lemma:

 $\|\cdot\|_{c}$ is norm on L_{c} .

Proof:

1.
$$||a_c||_c = 0$$
 if and only if $||a, c|| = 0$ i.e., if and only if $a_c = 0_c$

2. $\|\alpha a_c\|_c = \|(\alpha a)_c\|_c = \|\alpha, a, c\| = |\alpha| \|a, c\| = |\alpha| \|a, c\| = |\alpha| \|a, c\| = |\alpha| \|ac\|, \text{ when } \alpha \text{ is real.}$

3. $||a_{c} + b_{c}||_{c} = ||(a + b)_{c}||_{c} = ||a + b, c|| \le ||a, c|| + ||b, c|| = ||a_{c}||_{c} + ||b_{c}||_{c}$

Theorem :

For a linear 2-normed space (L, **||**:**||**), the following are equivalent :

- 1. (L, $\| : \|$) is strictly convex.
- 2. For every non-zero $c \in L, (L_c, ||\cdot||)$ is strictly convex.
- 3. ||a+b, c|| = a, b|| + ||b, c|| and $c \in V(a, b)$ imply that $a = \alpha a$, for some $\alpha > 0$.
- 4. $||a-d, c|| = \alpha ||a-b, c||, ||b-d, c|| = (a-\alpha) ||a-b, c|| \alpha \in (0,1), \text{ and } c \in V(a-d, b-d) \text{ imply}$ that $d = (1-\epsilon)a + \alpha b.$

Proof:

- 1. Let $(L, \|\cdot\|)$ be strictly convex and let c be a fixed non-zero element of L. If $\|a_c + b_c\|_c = \|a_c\|_c + \|b_c\|$ and $\|a_c\|_c = \|b_c\|_c = I$, then $\|a + b, c\| = \|a, c\| + \|b, c\|$ and $\|a, c\| = \|b, c\| = 1$. For the case $c \in V(a, b)$ and α and β then $0_c + c_c = \alpha a_c + \beta b_c$ or $\alpha a = -\beta b_c$. From $\|a_c\|_c = \|b_c\|_c = I$, it follows that $\alpha = \beta$ If $\alpha = \beta$ then $c = \alpha(a + b)$ which contradicts $\|a + b, c\| = \|a_c + b_c\|_c = 2$. Therefore, $\alpha = -\Box \Box$ and hence $a_c = b_c$. Thus $(L_c, \|\cdot\|$ is strictly convex.
- 2. Assume condition 2 holds. For $c \in V$ (a, b), let ||a + b, c|| = ||a, c|| + ||b, c||, i.e., $||a_c + b_c||_c = ||a_c||_c + ||b_c||_c$ By the strict convexity of $(L_c ||\cdot||e)$, it follows that $b_c = \alpha a_c$, some $\alpha > 0$. Finally, $c \in V(a, b)$ implies that $b = \alpha a$ and condition 3 is satisfied.
- 3. Assume condition 3. From $||a-d, c|| = \alpha ||a-b, c|| = 1 \alpha ||a-b, c||$, $c \in V(a-d, b-d)$ and $\alpha \in (0,1)$, it follows that $(1-\alpha)||a-b, c|| = ||b-d, c|| = \beta ||a-d, c|| = \alpha\beta ||a-b, c||$ implies that $d = (1-\alpha)\alpha a + b$. Therefore, condition 4 is established.
- 4. Finally, assume condition 4 and let ||a + b, c|| = ||a, c|| + ||b, c||, ||a, c|| = ||b, c|| = 1, where $c \in V(a, b)$. By condition 4, 0 = a b, i.e. a = b. Therefore $(L, || \cdot ||)$ is strictly convex and the theorem is proven.

If L is a linear space of dimension greater then 1, let B'₁ be the set of all formal expression $\sum a_i \times b_i$, where a_i , b_i (i = 1, ..., m) vectors in L. Let – be the equivalent relation on B'₁ defined by

$$\sum_{i=1}^{m} a_i \times b_i = \sum_{i=1}^{m} a_i \times b_i$$

if for arbitrary linear functions f and g on L,

$$\sum_{i=1}^{m} \begin{vmatrix} f(a_i) & g(a_i) \\ f(b_i) & b(b_i) \end{vmatrix} = \sum_{i=1}^{m} \begin{vmatrix} f(a_i^1) & g(a_i^1) \\ f(b_i^1) & g(b_i^1) \end{vmatrix}$$

Let B_1 be the quotient space $B_1/-$. The elements of B_1 are called bivectors over L and the elements of B_1' belonging to a bivector are called representatives of this bivector. The bivector with the representative

 $\sum_{i=1}^{m} a_i \times b_i \text{ will also be denoted by } \partial \left(\sum_{i=1}^{m} a_i \times b_i \right).$ If a bivector has a representative of the form

 $\sum_{i=1}^{m} a_i \times b_i = a_i \times b_i$, then it is said to be simple. Only in the case where L has dimension less than or equal to 3 does every bivector over L turn out to be simple. The space B₁ is a linear space with

$$\left(\sum_{i=1}^{m} a_i \times b_i\right) + \left(\sum_{i=1}^{m} a_{i+m} \times b_{i+m}\right) = \left(\sum_{i=1}^{m+n} a_i \times b_i\right) \text{ and } \beta \partial \left(\sum_{i=1}^{m} a_i \times b_i\right) = \partial \left(\sum_{i=1}^{m} a_i \times \beta b_i\right), \text{ when } \beta \text{ is real. If } \beta \partial (\sum_{i=1}^{m} a_i \times \beta b_i) = \partial \left(\sum_{i=1}^{m} a_i \times \beta b_i\right), \text{ when } \beta \text{ is real. If } \beta \partial (\sum_{i=1}^{m} a_i \times \beta b_i) = \partial \left(\sum_{i=1}^{m} a_i \times \beta b_i\right), \text{ when } \beta \text{ is real. If } \beta \partial (\sum_{i=1}^{m} a_i \times \beta b_i) = \partial \left(\sum_{i=1}^{m} a_i \times \beta b_i\right), \text{ when } \beta \text{ is real. If } \beta \partial (\sum_{i=1}^{m} a_i \times \beta b_i) = \partial \left(\sum_{i=1}^{m} a_i \times \beta b_i\right), \text{ when } \beta \text{ is real. If } \beta \partial (\sum_{i=1}^{m} a_i \times \beta b_i) = \partial \left(\sum_{i=1}^{m} a_i \times \beta b_i\right), \text{ when } \beta \text{ is real. If } \beta \partial (\sum_{i=1}^{m} a_i \times \beta b_i) = \partial \left(\sum_{i=1}^{m} a_i \times \beta b_i\right), \text{ when } \beta \text{ is real. If } \beta \partial (\sum_{i=1}^{m} a_i \times \beta b_i) = \partial \left(\sum_{i=1}^{m} a_i \times \beta b_i\right), \text{ when } \beta \text{ is real. If } \beta \partial (\sum_{i=1}^{m} a_i \times \beta b_i) = \partial \left(\sum_{i=1}^{m} a_i \times \beta b_i\right), \text{ when } \beta \text{ is real. If } \beta \partial (\sum_{i=1}^{m} a_i \times \beta b_i) = \partial \left(\sum_{i=1}^{m} a_i \times \beta b_i\right), \text{ when } \beta \text{ is real. If } \beta \partial (\sum_{i=1}^{m} a_i \times \beta b_i) = \partial \left(\sum_{i=1}^{m} a_i \times \beta b_i\right), \text{ when } \beta \text{ is real. If } \beta \partial (\sum_{i=1}^{m} a_i \times \beta b_i) = \partial \left(\sum_{i=1}^{m} a_i \times \beta b_i\right)$$

 $\|\cdot\|$ is a norm on B_L , then $\|a,b\| = \|(a \times b)\|$ defines a 2- norm on L. There is an example which shows that for every 2- norm $\|\cdot\|$ on L, there need not exist a norm $\|\cdot\|$ on B_1 which satisfies $\|(a \times b)\| - \|ab\|$ for all $a, b \in L$ if bivector L, i.e., if L has dimension less than or equal to 3, then for every 2 - norm $\|\cdot\|$ on L there is a norm $\|\cdot\|$ on B_1 with $\|(a \times b)\| - \|ab\|$ for all $a, b \in L$.

Theorem :

Let L be a linear space of dimension greater than 1, $\|\cdot\|$, be a norm on B₁, and $\|\cdot\|$ be a 2- norm on L with $\|(a \times b)\| = \|a, b\|$ for all $a, b \in L$. If $(B_1, \|\cdot\|)$ is strictly convex, then $(L, \|\cdot\|)$ is strictly convex. If the dimension of L is less than or equal to 3 and $(L, \|\cdot\|)$ is strictly convex, then $(B_1, \|\cdot\|)$ is strictly convex.

Proof:

1. Suppose $(B_1, \|\cdot\|)$ is strictly convex 1 or $c \in V(a, b)$, assume $\|a + b, c\| = \|a, c\| + \|b, c\|$ and $\|a, c\| = \|b, c\| = 1$. Then, $\|(a \times c) + (b \times c)\| = \|(a \times c)\| + \|(b \times c)\|$ and $\|*(a \times c)\| = *(b \times c)\| = 1$.

Since $(B_1, \|\cdot\|)$ is strictly convex, it follows that $*(a \times c) \|= *(b \times c)$. This implies that $a - b \in V(c)$. Therefore, a = b, since $c \notin V(a, b)$.

2. Suppose L has dimension less than or equal to 3 and $(L, \|\cdot\|)$ is strictly convex. Let $\|*1+*2\|=\|*1\|+\|*2$ and $\|*1=\|*2\|=1$. Hence, there exist vectors a, b, $c \in L$ with $*1=*(a \times c)$ and $*2=*(b \times c)$. Thus, $\|a+b,c\|=\|a,c\|+\|b,c\|$ and $\|a,c\|=\|b,c\|=1$. If $c \in V(a,b)$, these equations imply that $c = \alpha(a-b)$ for some real, and hence *1 = *2. If $c \notin V(a,b)$, then strict convexity of $(L, \|\cdot\|)$ implies that a = b, i.e. *1 = *2.

If L is a 2-dimensional linear space, then B_1 is a 1-dimensional normal linear space and every 1dimensional normed space is trivally strictly convex. Therefore, every 2-dimensional linear 2-normed space is strictly convex. Also, it follows that there are linear 2-normed space which are not strictly convex.

Theorem :

Let $(L, \| : \|)$ be a linear 2-normed space and $(L', \| \cdot \|)$ be a linear normed space.

Proof:

1. If $(L, \| \because \|)$ is strictly convex, c is a fixed non-zero-element of L, and f is a function from L into L which satisfies $\| f(a) - f(b), c \| = \| a - b \|$ for every $a, b \in L$, then the function g_c from L' into L_c , defined by $g_c(a) = [-f(a)]_c$, is linear.

If $(L, ||\cdot||)$ is strictly convex, c is a fixed non-zero element of L, and f a function from L into L' satisfying ||f(a) - f(b)|| = ||a - b, c||, for every $a \in bL$, then the function g from L into L', defined by g(a) = f(a) - f(0), is linear.

Let $(L, \|\cdot\|)$ be strictly convex and f, c, g_c be as given in statement 1. By a known theorem, $(L_c, \|\cdot\|_c)$ is strictly convex. For every $a, b \in L'$,

$$\begin{split} \|g_{c}(a) - g_{c}(b)\|_{c} &= \|[f(a) - f(b)]_{c}\|_{c} \\ &= \|f(a) - f(b), c\| \\ &= \|a - b\|. \end{split}$$

If follows that g_c is linear.

2. Let $(L', ||\cdot||)$ be strictly convex and f, c, g be as given in statement 2. Then g(0) = 0 and for every a, be L.

$$||g_{c}(a) - g(b)|| = ||f(a) - f(b)|| = ||a - b, c||$$

Thus, for $a, b \in L$ which satisfy $a_c - b_c$, it follows that ||g(a) - g(b)|| = 0 and the function g_c from L_c into L', given by $g_c(a_c) - g(a)$ is well-defined F or any

$$a, b \in L = ||g_{c}(a_{c}) - g_{c}(b_{c})|| = ||g(a)|| - g(b)||$$

= $||a - b, c||$
= $||a_{c} - b_{c}||_{c}$

Since $g_c(0_c) = g(0) = 0$, it implies that g, is linear. For any $a, b \in L$ and any real number $g(a) = g_c[(\alpha a)_c] = \alpha g_c(a_c)$, and $g(a + b) = g_c(a_c + b_c) = g_c(a_c) + g_c(b_c) = g(a) + g(b)$ Therefore a is linear

Therefore, g is linear.

COROLLARY:

Let $(L, \|\cdot\|)$ be a strictly convex linear 2-normed space, c be a fixed non-zero element of L, and f be a function from L into L which satisfies f(0) = 0 and $\|f(a) - f(b), c\| = \|a - b, c\|$ for every $a, b \in L$ Then the function g_c from L into L_c , defined by $g_c(a) = [f(a)_c]$, is linear.

Proof:

Since $(L, \| : \|)$ is strictly convex it implies that $(L_c, \| \cdot \|)$ is strictly convex. For any $a, b \in L$,

$$\|g_{c}(a) - g_{c}(b)\|_{c} = \|[f(a) - f(b)]_{c}\|_{c}$$
$$= \|f(a) - f(b), c\|$$
$$= \|a - b, c\|$$

From part 2 of the proceeding theorem, it follows the g_c in linear

Definition:

If M and N are linear subspaces of L, a bilinear form F on $M \times N$ is said to be bounded if there is a number K > 0 for which $|F(a,b)| \le K ||a,b||$ for every $(a,b) \in M \times N$

The norm of F, ||F|| is defined by

 $||F||=\inf \{K:|F(a,b)|\leq K ||a,b||\} \text{ for every } (a,b)\in M\times N.$

Theorem:

The following are equivalent :

A. $(L, ||\cdot||)$ is strictly convex.

B. If $c \neq 0$, F is a non-zero bounded bilinear form on $L \times V(c)$, ||x, c|| = ||y, c|| = 1 and

$$F(x,c) = F(y,c) = ||F||$$
, then either $x = y$ or $||x, y|| \neq 0$ and $c = \pm \frac{1}{||x, y||^{(x-y)}}$

Proof:

A. Assume (L, ||, ||) is strictly convex. Let $c \neq 0$ and F be a non-zero bounded bilinear form on $L \times V(c)$. If

$$F(x,c) = F(y,c) = ||F||$$
 and $||x,c|| = ||y,c|| = 1$, then $2 = \frac{1}{||F||}F(x+y,c) \le ||x+y,c||$

 $\leq ||x, c|| + ||y, c|| = 2$. Therefore ||x + y, c|| = 2. If $x \neq y$, then $c \in V(x, y)$ since otherwise the strict convexity of L would yield x = y. Hence, there are real numbers α and β for which $c = \alpha x + \beta y$.

Then, $1 = ||x, c|| = ||\alpha x + \beta y|| = |\beta| ||x, y||$. Similarly $|\alpha| ||x, y|| = 1$.

Therefore,
$$||x, y|| \neq 0$$
 and $|\alpha| = |\beta| = \frac{1}{||x, y||}$ Since $||x + y, c|| = 2$, it follows that $= \pm \frac{1}{||x, y||^{(x-y)}}$

B. Assume condition 2 holds and let $||a, c|| = ||b, c|| = 1, a \neq b$ and $c \notin V(a, b)$. Then, $||a + b, c|| \leq ||a, c|| + ||b, c|| = 2$. If ||a + b, c|| = 2, there is a bounded bilinear form F (a + b) = ||a + b||

defined on
$$L \times V(c)$$
 such that $||F||=1$ and $F\left(\frac{a+b}{2}, c\right) = \left\|\frac{a+b}{2}, c\right\| = 1$

Note that $F(a,c) \le |F(a,c)| \le ||F|| ||a,c|| = 1$. If F(a,c) = 1, then since $a \ne \frac{a+b}{2}$, condition 2

with x = a and $y = \frac{a+b}{2}$ implies that $c \in V(a,b)$ which is impossible.

Thus F(a,c) < 1. A similar argument shows that F(a,c) < 1 also. Therefore,

$$1 = \frac{1}{2}F(a+b,c) = \frac{1}{2}F(a+c) + \frac{1}{2}F(b,c) < 1$$

Hence, ||a + b, c|| < 2 and (L, ||, ||) is strictly convex.

REFERENCES

- 1. Sundaresan.K, On strictly convex spaces, J. Madras University, 1957; 295-298.
- 2. Diminnie.C, and White.A.G, Remarks on Strict convexity and Betweeness Postulates Demonstration Mathematics, 1981; 16(1): 209-217.
- 3. Clarkson.J.A, Uniformly convex spaces, Trans. Amer Math Soc. 1936; 40: 396-414.
- Diminnie.C, and White.A.G, Strict convexity in topological vector spaces, Math Japonica, 1977; 22: 49-56.
- 5. Diminnie.C, et. al. Remarks on strictly convex and strictly 2-convex 2- normed spaces, Math Nachr, 1979; 88: 363-372.
- Diminnie.C, and White.A.G, Strict convexity Conditions for seminorms, Math.Japonica,1980; 6, 24(5): 489-493.
- 7. Cho.Y.J, et. al., Strictly 2-convex linear 2- normed spaces, Math Japonica, .1982; 26: 495-498.
- 8. Cho.Y.J, et.al, Strictly 2-convex linear 2- normed spaces, Math Japonica. 1982; 27: 609-612.
- Malceski.A and Malceski.R, L^p(μ) as a 2-normed space, Matematicki bilten,2005; 29 (XL): 71-76.
- Malceski.R and Anevska.K, Strictly convex in quasi 2-pre-Hilbert space, IJSIMR, 2014; 2(7): 668-674.
- 11. Malceski.R,, Nasteski.Lj, Nacevska .B, and Huseini,A, About the strictly convex and uniformly convex normed and 2-normed spaces, IJSIMR, 2014; 2 (6): 603-610.
- 12. Ehret.R, Linear 2-normed Spaces, Doctoral Diss., Saint Louis Univ., 1969.
- Freese.R.W, Choand.Y.J, Kim.S.S, Strictly 2-convex linear 2-normed spaces, J. Korean Math. Soc 1992; 29: 391-400.
- 14. Malčeski.A, As a n-normed space, Matematički bilten, 1997; 21 (XXI): 103-110.
- Malcheski, S, Malcheski, R., Anevska, K., 2-semi-norms and 2-semi-inner product, International Journal of Mathematical Analysis, 2014; 8(52): 2601 – 2609.
- Malcheski, S., Malcheski, A., Anevska, K., Malcheski R.: Another characterization's of 2-pre-Hilbert Space, IJSIMR, 2015; 3(2): 45-54