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ABSTRACT: 

  The  two generating functions, namely, Wiener and Hyper-Wiener polynomials are the q-

analogues of the topological indices - Wiener and Hyper-Wiener indices respectively. Both 

polynomials have found substantial applications in chemical graph theory. However, these 

applications are by no means restricted to molecular graph, but we can also determine a remarkable 

variety of novel mathematical results. Motivated by this, we computed Wiener and Hyper-Wiener 

polynomials of Unitary Cayley graphs in this paper. 
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INTRODUCTION:  

           Throughout this paper, we consider simple connected graph G = (V, E) with n 

vertices and m edges. We denote the distance between the vertices u and v with d (u, v). 

The Wiener polynomial of G, W (G; q), is the polynomial whose first derivative at q 

=1 gives the Wiener index. i.e., W (G) = W  (G;1). It can be defined as  
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Analogously, the Hyper-Wiener polynomial of G, WW (G; q), is the polynomial whose first 

derivative at q =1 gives the Hyper-Wiener index. 

i.e., W W (G) = W W  (G;1). It can be defined as  
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  For more detailed study of these polynomials and their respective indices, refer 
2-9, 

14.
 

 In this paper, we urge to find out the Wiener and Hyper-wiener polynomials of 

Unitary Cayley graphs. Given a positive integer n > 1, the Unitary Cayley graph, denoted 

by Xn, can be defined as Xn = Cay(Zn,Un), where Zn is the additive group of ring of 

integers modulo n and Un is the multiplicative group of its units. Therefore, its vertex 

set is Zn and edge set is {(u, v) ; gcd (u − v, n) = 1}, for u,v Zn.  These graphs have got 

the property that they have integral spectrum and thus play a vital role in modelling 

quantum spin network supporting the perfect state transfer. Let  (n) denotes the  Euler 

function. View 
1, 10-13, 15

 for the comprehensive study of graphs and  Unitary Cayley Graphs. 

Let us see the following lemma which we use in the theorems: 

LEMMA 1.1: [11] Denote Fn(s) = Fn(a − b), the number of common neighbours of vertices a ƒ= 

b in the Unitary Cayley graph Xn for integers a, b, n ≥ 2 and prime p, . Then Fn(s) is given by 

Fn(s) = n  

np
p

p

/

)
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WIENER POLYNOMIAL OF UNITARY CAYLEY GRAPHS: 

THEOREM 2.1: If Xn is the Unitary Cayley graph, then the Wiener polynomial of Xn is 

given by 
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PROOF: For n  is  prime,  Xn is complete. So d(u, v)  = 1,  ∀ u,v Xn. Therefore, by 

definition of Wiener polynomial, we obtain 
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When  n = 2
α
,  >1, Xn is complete bipartite with vertex partition V (Xn) = 

{0,2,…,(n-2)}{1,3,…,(n-1)}. Then it is clear that d(u, v) = 1 or 2.  As a result, we 

get a 2-degree polynomial such that );( qnXW n
2
q + n( n – 1 )q

2
. 

Now we take the case of n as even and has an odd prime divisor p, where n  2
α
,

>1. This shows that Xn is bipartite with vertex set V as the union of V1 =  

{0, 2,…, (n-2)} and V2 =  {1,3,…,(n-1)}. In order to find out the Wiener polynomial of 

Xn, we need to calculate d(u, v). For the procedure, let us take the        

condition u V1 or u V2. First we take u V1 

Claim 1: d(u, v) =2 

Let v V1 . Clearly, u and v are not adjacent. Then by Lemma 1.1, for u,v  V1, there  exists 

a common neighbour. So d(u,v) = 2. 

Claim 2: d(u, v) = 3 

Now, consider the case u  V1 and v  V2. It is understood that there exists  (n) neighbours 

of u in V2. So we take V2 = AB, where A={vV2; uv  E(Xn)} and  

B ={vV2; uv E(Xn)}. Obviously, for u u V1 and v A, d(u,v) = 1.Let vB. It  follows 

that u and v are not adjacent. So take w  A  V2. Then uw  E(Xn). But we can see that v 

and w are both odd. So there should exist a common neighbour x to v and w which results 

in the conclusion that d(u, v) = 3 .  The case of u   V2 is analogous to the case u  V1. 

Thus it follows by definition of Wiener polynomial, 
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For n is odd but not prime, assume that p1,p2,…,ps are the different prime divisors of n. 

Let n = sr
s

rr
ppp ,...,, 21

21
,pi  2,1 .si  Since the factors in the expansion of Fn(a − b) in 

Lemma1.1 are all postive, all the vertices are either adjacent or there exist a common 

neighbour to every pair of distinct vertices.  This leads to the point that d(u, v) = 1 or 2. 

Hence again using the definition of Wiener polynomial, we reach the result that 
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This completes the proof. 

HYPER-WIENER POLYNOMIAL OF UNITARY CAYLEY GRAPHS: 

 THEOREM 3.1: If Xn is the Unitary Cayley graph, then the  Hyper-Wiener 

polynomial of Xn is given by 
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PROOF:  The proof is quite direct from the proof of Theorem 2.1. 

CONCLUSION:                                                                                             

      In this paper, we direct our attention to the two polynomials, namely, Wiener and 

Hyper-Wiener polynomials. Also, we could form the result with the computation of Wiener 

and Hyper-Wiener polynomials of Unitary Cayley graphs. 
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