

Research article

Available online www.ijsrr.org

International Journal of Scientific Research and Reviews

Wiener and Hyper-Wiener polynomials of Unitary Cayley Graphs Roshan Sara Philipose* and Sarasija P. B.

Research Scholar, Department of Mathematics, Noorul Islam Centre For Higher Education, Kumaracoil-629175, TamilNadu, India.

E-mail: roshanjilu@gmail.com and sijavk@gmail.com

ABSTRACT:

The two generating functions, namely, Wiener and Hyper-Wiener polynomials are the q-analogues of the topological indices - Wiener and Hyper-Wiener indices respectively. Both polynomials have found substantial applications in chemical graph theory. However, these applications are by no means restricted to molecular graph, but we can also determine a remarkable variety of novel mathematical results. Motivated by this, we computed Wiener and Hyper-Wiener polynomials of Unitary Cayley graphs in this paper.

KEYWORDS: Wiener index, Wiener polynomial, Hyper-Wiener index, Hyper-Wiener polynomial, Unitary Cayley graphs.

2010 AMS Classification: 05C50,05C78.

*Corresponding author:

Roshan Sara Philipose

Research Scholar,

Department of Mathematics,

Noorul Islam Centre For Higher Education,

Kumaracoil-629175, TamilNadu, India.

E-mail: roshanjilu@gmail.com

ISSN: 2279-0543

INTRODUCTION:

Throughout this paper, we consider simple connected graph G = (V, E) with n vertices and m edges. We denote the distance between the vertices u and v with d (u, v).

The Wiener polynomial of G, W(G; q), is the polynomial whose first derivative at q = 1 gives the Wiener index. i.e., W(G) = W'(G; 1). It can be defined as $W(G) = \sum_{\{u,v\}} q^{d(u,v)}$.

Analogously, the Hyper-Wiener polynomial of G, WW(G; q), is the polynomial whose first derivative at q = 1 gives the Hyper-Wiener index.

i.e.,
$$WW(G) = WW'(G;1)$$
. It can be defined as $WW(G) = \sum_{\{u,v\}} q^{d(u,v) + d^2(u,v)}$.

For more detailed study of these polynomials and their respective indices, refer ²⁻⁹, 14.

In this paper, we urge to find out the Wiener and Hyper-wiener polynomials of Unitary Cayley graphs. Given a positive integer n > 1, the Unitary Cayley graph, denoted by X_n , can be defined as $X_n = \text{Cay}(Z_n, U_n)$, where Z_n is the additive group of ring of integers modulo n and U_n is the multiplicative group of its units. Therefore, its vertex set is Z_n and edge set is $\{(u, v); \gcd(u-v, n)=1\}$, for $u, v \in Z_n$. These graphs have got the property that they have integral spectrum and thus play a vital role in modelling quantum spin network supporting the perfect state transfer. Let $\phi(n)$ denotes the Euler function. View $^{1, 10-13, 15}$ for the comprehensive study of gaphs and Unitary Cayley Graphs.

Let us see the following lemma which we use in the theorems:

LEMMA 1.1: [11] Denote $F_n(s) = F_n(a-b)$, the number of common neighbours of vertices a f = b in the Unitary Cayley graph X_n for integers a, b, $n \ge 2$ and prime p, . Then $F_n(s)$ is given by

$$F_n(s) = n \prod_{p \neq n} (1 - \frac{\varepsilon(p)}{p})$$
, where $\varepsilon(p) = \begin{cases} 1, & \text{if } p \text{ divides } s \\ 2, & \text{if } p \text{ does not divide } s \end{cases}$

WIENER POLYNOMIAL OF UNITARY CAYLEY GRAPHS:

THEOREM 2.1: If X_n is the Unitary Cayley graph, then the Wiener polynomial of X_n is given by

$$W(X_n;q) = \begin{cases} \frac{n(n-1)}{2}q, & if \ n \ is \ prime \\ \frac{n\phi(n)}{2}q + \frac{n(n-2)}{4}q^2, & if \ n = 2^\alpha, \alpha > 1 \\ \frac{n\phi(n)}{2}q + \frac{n(n-2)}{4}q^2 + \frac{n(n-2\phi(n))}{4}q^3, & if \ n \ is \ even \ and \ has \ an \ odd \ prime \ divisor \\ \frac{n\phi(n)}{2}q + \frac{n(n-\phi(n)-1)}{2}q^2, & if \ n \ is \ odd \ but \ not \ prime. \end{cases}$$

PROOF: For n is prime, X_n is complete. So d(u, v) = 1, \forall $u,v \in X_n$. Therefore, by definition of Wiener polynomial, we obtain $W(X_n;q) = \sum_{\{u,v\}} q^{d(u,v)} = \frac{n(n-1)}{2}q$.

When $n = 2^{\alpha}$, $\alpha > 1$, X_n is complete bipartite with vertex partition $V(X_n) = \{0,2,...,(n-2)\} \cup \{1,3,...,(n-1)\}$. Then it is clear that d(u, v) = 1 or 2. As a result, we get a 2-degree polynomial such that $W(X_n;q) = n^2q + n(n-1)q^2$.

Now we take the case of n as even and has an odd prime divisor p, where $n \neq 2^{\alpha}$, $\alpha > 1$. This shows that X_n is bipartite with vertex set V as the union of $V_1 =$

 $\{0, 2, ..., (n-2)\}$ and $V_2 = \{1, 3, ..., (n-1)\}$. In order to find out the Wiener polynomial of X_n , we need to calculate d(u, v). For the procedure, let us take the condition $u \in V_1$ or $u \in V_2$. First we take $u \in V_1$

Claim 1: d(u, v) = 2

Let $v \in V_1$. Clearly, u and v are not adjacent. Then by Lemma 1.1, for $u, v \in V_1$, there exists a common neighbour. So d(u, v) = 2.

Claim 2: d(u, v) = 3

Now, consider the case $u \in V_1$ and $v \in V_2$. It is understood that there exists $\phi(n)$ neighbours of u in V_2 . So we take $V_2 = A \cup B$, where $A = \{v \in V_2; uv \in E(X_n)\}$ and

 $B = \{v \in V_2; \ uv \notin E(X_n)\}$. Obviously, for $u \ u \in V_1$ and $v \in A$, d(u,v) = 1. Let $v \in B$. It follows that u and v are not adjacent. So take $v \in A \subset V_2$. Then $uv \in E(X_n)$. But we can see that v and v are both odd. So there should exist a common neighbour v to v and v which results in the conclusion that d(u, v) = 3. The case of $v \in V_2$ is analogous to the case $v \in V_1$. Thus it follows by definition of Wiener polynomial,

$$W(X_n;q) = \sum_{\{u,v\}} q^{d(u,v)} = \frac{n\phi(n)}{2} q + \frac{n(n-2)}{4} q^2 + \frac{n(n-2\phi(n))}{4} q^3.$$

For n is odd but not prime, assume that $p_1, p_2, ..., p_s$ are the different prime divisors of n. Let $n = p_1^{r_1}, p_2^{r_2}, ..., p_s^{r_s}$, $p_i \neq 2, 1 \leq i \leq s$. Since the factors in the expansion of $F_n(a-b)$ in Lemma1.1 are all postive, all the vertices are either adjacent or there exist a common neighbour to every pair of distinct vertices. This leads to the point that d(u, v) = 1 or 2. Hence again using the definition of Wiener polynomial, we reach the result that $W(X_n;q) = \sum_{\{u,v\}} q^{d(u,v)} = \frac{n\phi(n)}{2} q + \frac{n(n-\phi(n)-1)}{2} q^2$.

This completes the proof.

HYPER-WIENER POLYNOMIAL OF UNITARY CAYLEY GRAPHS:

THEOREM 3.1: If X_n is the Unitary Cayley graph, then the Hyper-Wiener polynomial of X_n is given by

$$WW(X_n;q) = \begin{cases} \frac{n(n-1)}{2}q^2, & \text{if n is prime} \\ \frac{n\phi(n)}{2}q^2 + \frac{n(n-2)}{4}q^6, & \text{if $n=2^\alpha,\alpha>1$} \\ \frac{n\phi(n)}{2}q^2 + \frac{n(n-2)}{4}q^6 + \frac{n(n-2\phi(n))}{4}q^{12}, & \text{if n is even and $has an odd prime divisor} \\ \frac{n\phi(n)}{2}q^2 + \frac{n(n-\phi(n)-1)}{2}q^6, & \text{if n is odd but not prime.} \end{cases}$$

PROOF: The proof is quite direct from the proof of Theorem 2.1.

CONCLUSION:

In this paper, we direct our attention to the two polynomials, namely, Wiener and Hyper-Wiener polynomials. Also, we could form the result with the computation of Wiener and Hyper-Wiener polynomials of Unitary Cayley graphs.

ACKNOWLEDGEMENT:

We are extremely grateful to those who spend their time and give us their valuable assistance for our paper molding.

REFERENCES:

1. Bondy J. A, Murty U.S.R. Graph Theory with Application, Macmillian Press. London, 1976.

- 2. Bruce. E. Sagan, Yeong-Nan Yeh, Ping Zhang, The Wiener polynomial of a Graph. International Journal of Quantum Chemistry; 1996; 60: 959-969.
- 3. Cash. G. G. Polynomial expressions for the Hyper-Wiener index of extended hydrocarbon networks. Comput. Chem. 2001; 25: 577-582.
- 4. Cash. G. G. Relationship Between the Hosoya Polynomial and the Hyper-Wiener Index Applied Mathematics Letters. 2002; 15: 893-895.
- 5. Devillers J, Balaban A. Editors, Topological Indices and Related Descriptors in QSAR and QSPR. Gordon and Breech, Amsterdam. 1999.
- 6. Fath-Tabar. G. H. Ashra A. R. The Hyper-Wiener Polynomial of Graphs. Iranian Journal of Mathematical Sciences and Informatics. 2011; 6(2): 67-74.
- 7. Graovac A, Pisauski T. On the Wiener Index of a graph, J. Math. Chem., 1991; 8: 53-62.
- 8. Gutman I. A property of the Wiener number and its medications. Indian J. Chem. 1997; 36A: 128-132.
- 9. Gutman Relation between hyper-Wiener and Wiener index. Chem. Phys. Letters. 2002; 364: 352-356.
- 10.Illic A. The energy of unitary Cayley graphs. Linear Algebra Appl; 2009; 431: 1881-1889.
- 11.Klotz. W, Slander T. Some properties of unitary Cayley graphs. The Electronic Journal of Combinatorics. 2007; 14: 1-12.
- 12.Roshan Sara Philipose, Sarasija P. B. Gutman Matrix and Gutman Energy of a Graph, Mathematical Sciences International Research Journal. 2018;7: 63-66.
- 13. Roshan Sara Philipose, Sarasija P. B Gutman Index and Harary Index of Unitary Cayley Graphs. International Journal of Engineering and Technology. 2018; 7(3): 1243-1244.
- 14. Wiener. H. Structural determination of paraffin boiling points, J. Amer. Chem. Sot. 1947: 69: 17-20.
- 15. Xiaogang Liu, Sanming Zhou. Spectral properties of unitary Cayley graphs of nite commutative rings. The Electronic Journal of Combinatorics. 2012; 19(4): 13-32.