Research article
Available online www.ijsrr.org ISSN: 2279–0543

International Journal of Scientific Research and Reviews

Wiener and Hyper-Wiener polynomials of Unitary Cayley Graphs

Roshan Sara Philipose* and Sarasija P. B.

Research Scholar, Department of Mathematics, Noorul Islam Centre For Higher Education, Kumaracoil-629175, TamilNadu, India.
E-mail: roshanjilu@gmail.com and sijavk@gmail.com

ABSTRACT:

The two generating functions, namely, Wiener and Hyper-Wiener polynomials are the q-analogues of the topological indices - Wiener and Hyper-Wiener indices respectively. Both polynomials have found substantial applications in chemical graph theory. However, these applications are by no means restricted to molecular graph, but we can also determine a remarkable variety of novel mathematical results. Motivated by this, we computed Wiener and Hyper-Wiener polynomials of Unitary Cayley graphs in this paper.

KEYWORDS: Wiener index, Wiener polynomial, Hyper-Wiener index, Hyper-Wiener polynomial, Unitary Cayley graphs.

2010 AMS Classification: 05C50,05C78.

*Corresponding author:
Roshan Sara Philipose
Research Scholar,
Department of Mathematics,
Noorul Islam Centre For Higher Education,
Kumaracoil-629175, TamilNadu, India.
E-mail: roshanjilu@gmail.com
INTRODUCTION:

Throughout this paper, we consider simple connected graph \(G = (V, E) \) with \(n \) vertices and \(m \) edges. We denote the distance between the vertices \(u \) and \(v \) with \(d(u, v) \).

The Wiener polynomial of \(G \), \(W(G; q) \), is the polynomial whose first derivative at \(q = 1 \) gives the Wiener index. i.e., \(W(G) = W'(G;1) \).

Analogously, the Hyper-Wiener polynomial of \(G \), \(WW(G; q) \), is the polynomial whose first derivative at \(q = 1 \) gives the Hyper-Wiener index. i.e., \(WW(G) = WW'(G;1) \).

For more detailed study of these polynomials and their respective indices, refer \(^{2-9}\).

In this paper, we urge to find out the Wiener and Hyper-wiener polynomials of Unitary Cayley graphs. Given a positive integer \(n > 1 \), the Unitary Cayley graph, denoted by \(X_n \), can be defined as \(X_n = Cay(Z_n,U_n) \), where \(Z_n \) is the additive group of ring of integers modulo \(n \) and \(U_n \) is the multiplicative group of its units. Therefore, its vertex set is \(Z_n \) and edge set is \(\{(u,v);gcd(u-v,n)=1\} \), for \(u,v \in Z_n \). These graphs have got the property that they have integral spectrum and thus play a vital role in modelling quantum spin network supporting the perfect state transfer. Let \(\phi(n) \) denotes the Euler function. View \(^{1,10-13,15}\) for the comprehensive study of graphs and Unitary Cayley Graphs.

Let us see the following lemma which we use in the theorems:

LEMMA 1.1: \(^{[11]}\) Denote \(F_n(s) = F_n(a-b) \), the number of common neighbours of vertices \(a \neq b \) in the Unitary Cayley graph \(X_n \) for integers \(a, b, n \geq 2 \) and prime \(p \). Then \(F_n(s) \) is given by

\[
F_n(s) = n \prod_{p \mid n} \left(1 - \frac{\varepsilon(p)}{p} \right), \quad \text{where } \varepsilon(p) = \begin{cases} 1, & \text{if } p \text{ divides } s \\ 2, & \text{if } p \text{ does not divide } s \end{cases}
\]

WIENER POLYNOMIAL OF UNITARY CAYLEY GRAPHS:

THEOREM 2.1: If \(X_n \) is the Unitary Cayley graph, then the Wiener polynomial of \(X_n \) is given by
\[
W(X_n; q) = \begin{cases}
\frac{n(n-1)}{2} q, & \text{if } n \text{ is prime} \\
\frac{n\phi(n)}{2} q + \frac{n(n-2)}{4} q^2, & \text{if } n = 2^\alpha, \alpha > 1 \\
\frac{n\phi(n)}{2} q + \frac{n(n-2)}{4} q^2 + \frac{n(n-2\phi(n))}{4} q^3, & \text{if } n \text{ is even and has an odd prime divisor} \\
\frac{n\phi(n)}{2} q + \frac{n(n-\phi(n)-1)}{2} q^2, & \text{if } n \text{ is odd but not prime.}
\end{cases}
\]

PROOF: For \(n \) is prime, \(X_n \) is complete. So \(d(u, v) = 1, \forall \, u, v \in X_n \). Therefore, by definition of Wiener polynomial, we obtain \(W(X_n; q) = \sum_{\{u, v\}} q d(u, v) = \frac{n(n-1)}{2} q. \)

When \(n = 2^\alpha, \alpha > 1 \), \(X_n \) is complete bipartite with vertex partition \(V(X_n) = \{0, 2, \ldots, (n-2)\} \cup \{1, 3, \ldots, (n-1)\} \). Then it is clear that \(d(u, v) = 1 \) or 2. As a result, we get a 2-degree polynomial such that \(W(X_n; q) = n^2 q + n(n-1)q^2. \)

Now we take the case of \(n \) as even and has an odd prime divisor \(p \), where \(n \neq 2^\alpha, \alpha > 1 \). This shows that \(X_n \) is bipartite with vertex set \(V \) as the union of \(V_1 = \{0, 2, \ldots, (n-2)\} \) and \(V_2 = \{1, 3, \ldots, (n-1)\} \). In order to find out the Wiener polynomial of \(X_n \), we need to calculate \(d(u, v) \). For the procedure, let us take the condition \(u \in V_1 \) or \(u \in V_2 \). First we take \(u \in V_1 \)

Claim 1: \(d(u, v) = 2 \)

Let \(v \in V_1 \). Clearly, \(u \) and \(v \) are not adjacent. Then by Lemma 1.1, for \(u, v \in V_1 \), there exists a common neighbour. So \(d(u, v) = 2 \).

Claim 2: \(d(u, v) = 3 \)

Now, consider the case \(u \in V_1 \) and \(v \in V_2 \). It is understood that there exists \(\phi(n) \) neighbours of \(u \) in \(V_2 \). So we take \(V_2 = A \cup B \), where \(A = \{v \in V_2; uv \in E(X_n)\} \) and \(B = \{v \in V_2; uv \notin E(X_n)\} \). Obviously, for \(u \in V_1 \) and \(v \in A \), \(d(u, v) = 1 \). Let \(v \in B \). It follows that \(u \) and \(v \) are not adjacent. So take \(w \in A \subset V_2 \). Then \(uw \in E(X_n) \). But we can see that \(v \) and \(w \) are both odd. So there should exist a common neighbour \(x \) to \(v \) and \(w \) which results in the conclusion that \(d(u, v) = 3 \). The case of \(u \in V_2 \) is analogous to the case \(u \in V_1 \).

Thus it follows by definition of Wiener polynomial,

\[
W(X_n; q) = \sum_{\{u, v\}} q d(u, v) = \frac{n\phi(n)}{2} q + \frac{n(n-2)}{4} q^2 + \frac{n(n-2\phi(n))}{4} q^3.
\]
For \(n \) is odd but not prime, assume that \(p_1, p_2, \ldots, p_s \) are the different prime divisors of \(n \). Let \(n = p_1^{r_1} p_2^{r_2} \ldots p_s^{r_s} \), \(p_i \neq 2, 1 \leq i \leq s \). Since the factors in the expansion of \(F_n(a - b) \) in Lemma 1.1 are all positive, all the vertices are either adjacent or there exist a common neighbour to every pair of distinct vertices. This leads to the point that \(d(u, v) = 1 \) or 2. Hence again using the definition of Wiener polynomial, we reach the result that

\[
W(X_n; q) = \sum_{\{u, v\}} q^{d(u, v)} = \frac{n\phi(n)}{2} q^n + \frac{n(n - \phi(n) - 1)}{2} q^2.
\]

This completes the proof.

HYPER-WIENER POLYNOMIAL OF UNITARY CAYLEY GRAPHS:

THEOREM 3.1: If \(X_n \) is the Unitary Cayley graph, then the Hyper-Wiener polynomial of \(X_n \) is given by

\[
WW(X_n; q) = \begin{cases}
\frac{n(n - 1)}{4} q^2, & \text{if } n \text{ is prime} \\
\frac{n\phi(n)}{2} q^2 + \frac{n(n - 2)}{4} q^6, & \text{if } n = 2^\alpha, \alpha > 1 \\
\frac{n\phi(n)}{2} q^2 + \frac{n(n - 2)}{4} q^6 + \frac{n(n - 2\phi(n))}{4} q^{12}, & \text{if } n \text{ is even and has an odd prime divisor} \\
\frac{n\phi(n)}{2} q^2 + \frac{n(n - \phi(n) - 1)}{2} q^6, & \text{if } n \text{ is odd but not prime}.
\end{cases}
\]

PROOF: The proof is quite direct from the proof of Theorem 2.1.

CONCLUSION:

In this paper, we direct our attention to the two polynomials, namely, Wiener and Hyper-Wiener polynomials. Also, we could form the result with the computation of Wiener and Hyper-Wiener polynomials of Unitary Cayley graphs.

ACKNOWLEDGEMENT:

We are extremely grateful to those who spend their time and give us their valuable assistance for our paper molding.

REFERENCES:

