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ABSTRACT 
 The concept of finite discrete time Fuzzy Possibilistic Markov Chain (FPMC) on the fuzzy 

possibility space (ܺ,ܴ,Π෩) is introduced. We analyze the classification of its states. Finally, we give 

the necessary conditions for the occurrence of the ergodicity and find its steady state using Eigen 

fuzzy sets. 
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1 INTRODUCTION: 

 In some circumstances, where the existing information about the system is not enough, the 

estimation of the probability values is difficult. To overcome these difficulties, the possibility 

measures have been used since 1965.A Fuzzy Markov Chain 1was defined with crisp transition 

probabilities by Bhattacharya in 2 and with fuzzy transition probabilities by Kruse et al3. In 4, the 

authors defined the fuzzyfinite Markov chains based on possibility theory and compared the results 

of classical Markov chains and FMC.Possibilistic Markov processes and possibilistic Markov chain 

were defined and analyzed in 6. Several authors’s contributed considerable work in this direction 8, 9, 

10, 11, 17. In2Avrachenkov andSanchez, pointed out the difference between the classical and fuzzy 

Markov chains. 

2 PRELIMINARIES: 

DEFINITION 2.1 
  For every possibility measure Π on (X, R), there exists a unique R - measurable mapping π 

:X L such that for any B ∈ R, Π(B) = supx∈BΠ(x) where Π(x) = Π([x]R), x ∈ X. 

DEFINITION 2.2 

  Let(Ω,RΩ,ΠΩ)beanotherpossibilityspace.Amapping 

f:Ω→XiscalledpossibilityvariableifffisaRΩ−RXmeasurable.LetB∈R,then 

(ܤ)ߎ																	 = Ω൫݂ߎ
ିଵ(ܤ)൯

(ݔ)ߨ																																														 = ݔ∀,[(߱)Ωߎ]௙(ఠ)∈[௫]ೃ݌ݑݏ ∈ ܺ
ቋ,(2.1) 

DEFINITION2.3 
 Let f :Ω → ܺ be a possibility variable on (X, R). By the transformation of possibility measure, Πis 

a possibility measure on(X,R). 

(ܤ)௙ߎ = 	 ఆߎ)
௙ܴ)(ܤ),∀	ܤ ∈ ܴ = ((ܤ)ଵି݂)ఆߎ

(ݔ)௙ߎ = ݔ∀,[(߱)Ωߎ]௙(ఠ)∈[௫]ೃ݌ݑݏ ∈ ܺ
ቋ										(2.2)																		 

WhereΠ f is called as the possibility measure of f  

3 PROPERTIES AND CLASSIFICATION OF FPMC 

3.1 Fuzzy Possibilisitic Markovchain ( Fpmc) 

In this subsection, we have defined some new concepts and have introduced FPMC. We have 

also generalized the properties of classical Markov chain to FPMC using max-min composition. 
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THEOREM 3.1 

  Let ܣሚஈ = (ݔ)஺෨ಀߤ,ݔ} =  .෨௫}beanormalizedtype2fuzzysetdefinedonXandB̃xܤ

ThenΠ̃formsapossibilityspace(X,R,Π̃)suchthatthereexistapossibilityvariablefwiththepossibilitydistributi

on	ߤ஺෨ಀ. 

PROOF: 

LetÃΠbe as g iven in t he st at ement  

andletΠ̃:R→F([0,1])bethefuzzyPossibilitysuchthatΠ̃(B)=supx∈B[ߤ஺˜ூூ(x)]=supx∈BB̃xforallB∈R.Clearly

,Π̃(Φ)=0.Since the given type 2 fuzzy set is normalized, there exists an element with membership 

grade (1, 1, 1) 

anditisthesupremumamongallfuzzynumberson[0,1].HenceΠ̃(X)=supx∈X[B̃x]=(1,1,1).ToprovethatΠ̃(∪i

Bi)=supi(Π̃(Bi)),where{Bi}isanarbitrarycollectionofsubsetsofX,letC=∪iBi.ThenΠ̃(C)=supx∈C[B̃x]=B̃x1

.Obviously,thecorrespondingx1isinatleastoneofthe Bi‘s.Hence,supi[Π̃(Bi)]=݌ݑݏ௜ {[෨௫ܤ]௫ఢ஻௜݌ݑݏ}	 =

෨௑భandpΠ̃(∪iBi)=supi(Π̃(Bi)).ThisprovesthatthefuzzypossibilityΠ̃isapossibilitymeasureon(X,R)withposܤ

sibilitydistributionπ̃(x)=ߤ஺෨ಀ(ݔ)i.e.,(X,R,Π̃)ispossibilityspace.By(2.2)and(2.3), f is a possibility 

distribution.  

Hence,Π̃f=ߤ஺෨ಀ . 

Note:Thepossibilityspace(X,R,Π̃)inducedbythefuzzypossibilityΠ̃is named as  fuzzypossibility space 

and the possibility distribution is called fuzzy possibility distribution. 

DEFINITION 3.1 
The set of possibility variables 

{X(t);t∈T},definedonthefuzzypossibilityspace(X,R,Π̃)iscalledthefuzzypossibilistic stochasticprocess 

(FPSP). 

DEFINITION 3.2 
The Fuzzy Possibilistic Stochastic Process (FPSP) satisfying the Markovian property 

iscalledthefuzzypossibilisticMarkovchain(FPMC),  

And	݉ܽݔ௝{ߨ෤௜,௝}=(1, 1, 1). The transition between the states of the FPMC can be viewed as a fuzzy 

relation with fuzzyrelationmatrixH̃.Hence,insteadofmatrixmultiplication,weareusingcompositionoftwo 

fuzzy relations (max-mincomposition). 
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ii

DEFINITION3.3 

AFPMCissaidtobehomogeneous,ifthefuzzytransitionpossibilityfromstate‘i'atstepmtostate‘j’atstepndoe

snotdependonmandn,butonlyonthe difference n-m. 

i.e.,π̃ij(n,m)=π̃ij(n−m) H̃(n,m)=H̃(n−m). 

THEOREM 3.2 

Consider a homogeneous FPMC {X(n), n = 0, 1, ...} with m states and with fuzzy 

Transitionpossibilityπ̃ij.Thenforalln1,n2≥0,H̃(n1+n2)=H̃(n1)⊗H̃(n2). 

PROOF: 
Consider  

Π෩௡భା௡మ = Π෩{ܺ(݊ଵ + ݊ଶ) = ݆|	ܺ(0) = ݅} 

௞ୀ଴௡ݔܽ݉= ݉݅݊[Π෩௜௞(݊ଵ),Π෩௞௝(݊ଶ)] 

 Note that max௜(Π෩௜௝ )hence proved and itis called the Chapman-Kolmogorov equation of FPMC.Hence 

ByinductionH̃(n)=H̃ . 

DEFINITION 3.4 
Consider a FPMC with m states. Then thefuzzypossibilityofbeinginstate I 

atnthstepisgivenby,p̃i(n)=Π̃(X(n)=i).Andtherowvector, P̃(n)=[ p̃0(n),p̃1(n),... p̃m(n) ] 

iscalledthestatefuzzypossibilitydistributionatthenthstep.Andwe 

denotethelimitingstatefuzzypossibilitydistributionaslimn→∞ P̃(n)=Γ̃. 

3.2 Classification Of The States Of Afpmc 
  In this subsection, we are considering a homogeneous FPMC with m states. 

DEFINITION3.5 

Let ܨ෨௜௝ = 	)௜݌ݑݏ ሚ݂௜௝(݊)) where ሚ݂௜௝(݊)the fuzzy possibility of the first time visit to stage j 

In the probability space, positive recurrent is defined in terms of mean recurrence time where 

itisnotpossibleforFPMC.Ifwedefinethemeanrecurrencetimeforarecurrentstate‘i'asµ̃i= 

supk[inf(k, f˜ii(k))], since the k-values are positive integers and  f˜’ s are triangular fuzzy numbers 

on[0,1],weget[inf(k, f˜ii(k))] =f̃ii(k)providedk≠0.Hence,µ̃i=[supkf̃ii(k)]=f̃ii=(1,1,1)which is always 
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finite. Hence the positive recurrence for a state of FPMC is defined as follows. 

DEFINITION 3.6 

A state ‘i’is transient iffthere is a fuzzy possibility that the processwillneverreturntostate‘i’ 

andF̃ii<(1,1,1). 

DEFINITION3.7 

IfthepowersoftheFTPMH̃convergein n steps to a non-periodic solution, then the associated FPMC is 

said to be a periodic. 

4 ERGODICITY OF FPMC 
For FPMC, the limiting FTPMwill have stationary solutions depends on the initial state. Hence, 

in 1 the ergodicity is defined as follows. 

DEFINITION 4.1 
  A FPMC is said to be ergodic if it is aperiodic and has limiting FTPMwith identical rows. 

THEOREM4.1 

  LetH̃3×3bethefuzzytransitionpossibilitymatrixofaFPMCwiththreestates. Then FPMC is 

ergodic, if H̃possessthefollowingproperties. 

• H̃hasatleastone columnj1insuchawaythatall then triesofj1areequalto(1,1,1). 

• Ifmax௜(ℎ෨௜௝)for each j(excludingthej1
thcolumnandrow)arenot thediagonalentries,thenℎ෨௝భ௞ ≥

min max௜(ℎ෨௜௝) ℎ෩௞భ௞భ	If there is	.݇	݁݉݋ݏ	ݎ݋݂	݀݊ܽ	݆	∀	 ≥ min max௜(ℎ෨௜௝) a diagonalentry, 

then ℎ෨௝భ௞ ≥ 	ℎ෩௞భ௞భ . 

• IfadiagonalentryH̃ii(i≠j1)ofH̃isthelargestelementinithcolumn,then	ℎ෩௝భ௜ ≥ 	ℎ෨௜௝.Ifthereis ℎ෨௝௝ ≥

ℎ෨௜௝thenh̃j1i≥h̃jj. 

PROOF: 
 To get the rows of the limiting FTPMto be identical, the FTPMshould be converge and the 

entries in each column of the limiting. FTPMshouldbeequal. Letusassume that 

H̃satisfiestheabovethree properties. Now we prove that there exist a liming FTPM with 

identicalrowscorrespondingtoH̃. 
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1 

CASE: 1 
 SincetherowsoftheFPMCarefuzzypossibilitydistributions,therowmaximumofeachrowof 

H̃is(1,1,1).Lettheentries ofjthcolumnbeequalto(1,1,1).Then,thiscolumnentrieswillbe 

retainedinthehigherpowersofH̃.. In the remaining part of this proof, we have considered 

bymax௜(ℎ෨௜௝)for each jexcludingjthcolumnandrow. 

CASE: 2 

 Let none of the column maximums be the diagonal entries of ܪ.෪ Since the given FPMC has 

three states and the diagonal entries will not be the column maximums, the maximum entries of the 

݅௧௛ and ݆௧௛  column will be  ℎ෨௜௝. Let ℎ෨௝భ௜ ≥ min{	ℎ෨௜௝ 	,ℎ෨௝௜}. Since each row’s ݆ଵ௧௛  entry is (1,1,1) and 

ℎ෨௝భ௜ ≥ min{	ℎ෨௜௝ 	, ℎ෨௝௜},	the entries of ݅௧௛column ܪଶ෪  are equal to ℎ෨௝భ௜ . And in the ݆௧௛column ܪଶ෪ , ℎ෨௝భ௝
ଶ  

(∴ ℎ෨௝భ௝
ଶ = ℎ෨௜௝ 	݂݅	ℎ෨௝భ௜ ≥ ℎ෨௜௝ ℎ෨௝భ௜	ݎ݋	

ଶ = ℎ෨௝భ௜ 	݂݅	ℎ෨௝భ௜ ≥ ℎ෨௜௝ . Even though ℎ෨௝భ௜ ≥ min{	ℎ෨௝௜ 	,ℎ෨௜௝}, if there is 

a diagonal entry ℎ෨௝௝ ≥ min{ℎ෨௜௝ , ℎ෨௝௜}, thenℎ෨௝௝௡ = ℎ෨௝௝. If ℎ෨௝భ௜ ≥ ℎ෨௝௝then the entries of the ݅௧௛ column of 

ଶ෪ܪ  are equal to ℎ෨௝భ௜. Since ℎ෨௝భ௜ ≥ ℎ෨௝௝and ℎ෨௝௝ ≥ min{	ℎ෨௝௜ 	, ℎ෨௜௝}, ℎ෨௝భ௝
ଶ [ℎ෨௝భ௝

ଶ = ℎ෨௜௝ 	݂݅		ℎ෩௝భ௜ ≤

ℎ෨௜௝ ℎ෨௝భ௝	ݎ݋	
ଶ = 	ℎ෩௝భ௜ 	݂݅		ℎ෩௝భ௜ ≤ ℎ෨௜௝]	is theܪ෩௞௜ଶ = 	ℎ෩௝భ௜. Hence we get the limiting FTPM with identical 

rows 

CASE: 3 

  Suppose that  max௞(ℎ෨௞௝) = ℎ෨௜௝and andℎ෨௝భ௜ ≥ ℎ෨௜௜Then ℎ෨௝భ௝
ଶ

= min{ℎ෨௜௜ ,ℎ෨௜௝} 

Since 	ℎ෩௝భ௜ ≥ ℎ෨௝௝and ℎ෨௝௝ ≥ min	{ℎ෨௜௜, ℎ෨௜௝}, ℎ෨௝భ௝
ଶ [ℎ෨௝భ௝

ଶ = ℎ෨௜௝ 	݂݅		ℎ෩௝భ௜ ≥ ℎ෨௜௝ ℎ෨௝భ௝	ݎ݋	
ଶ = 	 	ℎ෩௝భ௜	݂݅		ℎ෩௝భ௜ ≤

ℎ෨௜௝] will be the largest in the jth column. In ܪ෩ଷ, all the entries of jth column become equal to ℎ෨௝భ௝
ଶ
. 

Hence we attain the limiting FTPMwith identical rows. 

THEOREM4.2 

  ForahomogeneousirreducibleergodicFPMC,letΓ̃j=lim௡→ஶ ෤௜௝௡ߨ ,j≥0.Then, 

Γ̃=(Γ̃1,Γ̃2,...,(Γ̃m)isthegreatesteigenfuzzyset(EFS)ofΓ̃⊗H̃=Γ̃suchthat⊕iΓ̃=(1,1,1).AndΓ̃is called the 

steady state ofFPMC. 

PROOF: 

The existence of Γ෨௝ = lim୬→ஶπ෥୨୬	 

݊)ܺ)෤ߨ + 1) = ݆) = ݊)ܺ)෤ߨ]	݊݅݉}௜ݔܽ݉ + 1) = ݆)|ܺ(݊) = ݅)]} 

 {෤௜௝൧ߨ,෤௜(n)ߨൣ݊݅݉}௜ݔܽ݉	=  
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 
 

lim
௡→ஶ

݊)෤௝ߨൣ + 1)൧ = lim
௡→ஶ

 {෤௜௝ൟߨ,(݊)෤ߨ෤ߨmin൫}௜ݔܽ݉

= ]	݊݅݉}௜ݔܽ݉	 lim
௡→ஶ

 {[෤௜௝ߨ,(݊)෤௜݌

=  ෤௜௝൧ൟߨ,௜൛minൣΓ෨௜ݔܽ݉	

Γ෨௝=Γ෨௜⊗ߨ෤௜௝, j≥0 

Γ̃=Γ̃⊗H̃,j≥0. 

  Since the given FPMC is ergodic, therows of its limiting transition matrix are equal to the 

greatest EFS of the fuzzyrelationdefinedbyPwhichhasbeenprovedin[1],  therowsoft helimiting 

FTPMܪ෩ are equal to the greatest EFS of  Γ෨ = Γ෨ 	⊗ ෩ and also Γ෨௝ܪ = lim୬→ஶπ෥୨୬,Γ෨ = ൫Γ෨ଵ,Γ෨ଶ, … , Γ෨୫൯is 

the greatest EFS of Γ෨ = Γ෨ 	⊗ ෩ and ⊕୧ܪ Γ෨୧ = (1,1,1). 

4 EXAMPLE  
The FTPMof FPMC is, 

෩=ቌܪ
(0.1,0.3,0.4) (1,1,1) (0.3,0.4,0.6)
(0.1,0.2,0.5) (1,1,1) (0.3,0.5,0.6)
(0.1,0.4,0.5) (1,1,1) (0.4,0.6,0.7)

ቍ 

Then,H̃2=H̃3...= ቌ
(0.1,0.4,0.5) (1,1,1) (0.3,0.5,0.6)
(0.1,0.4,0.5) (1,1,1) (0.3,0.5,0.6)
(0.1,0.4,0.5) (1,1,1) (0.4,0.6,0.7)

ቍ 

 Since the limiting FTP Mconverges at T = 2 with non-identical rows, the given FPMC is not 

ergodic. And the steady state for this FPMC will not exist 

5 CONSUMMATION 
In this article, we have considered a map, called fuzzy possibility on the ample field of the 

universe X and have proved that if there exists a normalized type 2 fuzzy set on X, then thefuzzy 

possibility constructs a possibility space onX. On this fuzzy possibility space, we have defined the 

FPMCandtherowsofitsFTPMH̃.And we have classified its states. We have considered a FPMC with 

three states and have found out the necessary conditions for its ergodicity.  we have proved that, if a 

FPMC is ergodic, then its steady state is the greatestEFS of the fuzzy relation defined by H̃ .   
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