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ABSTRACT
The concept of finite discrete time Fuzzy Possibilistic Markov Chain (FPMC) on the fuzzy

possibility space (X,R,II) is introduced. We analyze the classification of its states. Finally, we give

the necessary conditions for the occurrence of the ergodicity and find its steady state using Eigen
fuzzy sets.
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1 INTRODUCTION:

In some circumstances, where the existing information about the system is not enough, the
estimation of the probability values is difficult. To overcome these difficulties, the possibility
measures have been used since 1965.A Fuzzy Markov Chain 'was defined with crisp transition
probabilities by Bhattacharya in * and with fuzzy transition probabilities by Kruse et al’. In *, the
authors defined the fuzzyfinite Markov chains based on possibility theory and compared the results
of classical Markov chains and FMC.Possibilistic Markov processes and possibilistic Markov chain
were defined and analyzed in °. Several authors’s contributed considerable work in this direction & *

101117 " 1n2Avrachenkov andSanchez, pointed out the difference between the classical and fuzzy

Markov chains.

2 PRELIMINARIES:
DEFINITION 2.1

For every possibility measure II on (X, R), there exists a unique R - measurable mapping 1T

:X L such that for any B € R, TI(B) = supxeBII(x) where I1(x) = II([X]R), x € X.

DEFINITION 2.2
Let(Q2,RQ,I1Q)beanotherpossibilityspace.Amapping

f:Q—XiscalledpossibilityvariableifffisaRQ—RXxmeasurable.LetBeR,then

1(B) = My (f(B))
(2.1)
m(x) = supy ez o (@)] vx € X
DEFINITION2.3
Let f :Q — X be a possibility variable on (X, R). By the transformation of possibility measure, IIis

a possibility measure on(X,R).

1p(B) = (IjR)(B) VB € R = nﬂ<f-1<B))}
(2.2)
11§ (x) = sups(wyepxx o (@)1, Vx € X
Wherell £ is called as the possibility measure of f
3 PROPERTIES AND CLASSIFICATION OF FPMC
3.1 Fuzzy Possibilisitic Markovchain ( Fpmc)
In this subsection, we have defined some new concepts and have introduced FPMC. We have

also generalized the properties of classical Markov chain to FPMC using max-min composition.
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}I'HEOREM 3.1

Let AT = {x, um (x) = B,}beanormalizedtype2fuzzysetdefinedonXandBy,
Thenfﬂ‘ormsapossibiIityspace(X,R,ﬁ)suchthatthereexistapossibiIityvariablefwiththepossibiIitydistributi
on psm.
PROOF:
LetAllbe as given in the statement

. oL 3
andlet[TR—F([0,1])bethefuzzyPossibilitysuchthatl(B)=supxeB[Ma! (X)]=supxeBBxforallIBeR.Cleatly

J{®)=0.Since the given type 2 fuzzy set is normalized, there exists an element with membership
grade (1, 1, 1)

anditisthesupremumamongallfuzzynumberson[0,1].HenceI{X)=supxex[Bx]=(1,1,1). Toprovethat{uj
Bi)=supi(T{Bi)),where{Bj}isanarbitrarycollectionofsubsetsof X, letC=UjiBj. ThenI{C)=supxeC[Bx]=Bx,

.Obviously,thecorrespondingx,isinatleastoneofthe Bi‘s.Hence,supi[fI(Bi)]=sup; {SupxeBi[Ex]} =

§X1andpfl(uiBi):su pi(fI(Bi)).ThisprovesthatthefuzzypossibiIityflisapossibiIitymeasureon(X,R)withpos

sibilitydistributionfi(X)=p sn (x)i.e.,(X,R,[Dispossibilityspace.By(2.2)and(2.3), f is a possibility
distribution.

Hence, TF=yn.

Note: Thepossibilityspace(X,R, I)inducedbythefuzzypossibility[is named as fuzzypossibility space
and the possibility distribution is called fuzzy possibility distribution.
DEFINITION 3.1

The set of possibility variables

{X(t):teT},definedonthefuzzypossibilityspace(X,R,IDiscalledthefuzzypossibilistic stochasticprocess

(FPSP).

DEFINITION 3.2

The Fuzzy Possibilistic Stochastic Process (FPSP) satisfying the Markovian property
iscalledthefuzzypossibilisticMarkovchain(FPMC),

And max;{f; ;}=(1, 1, 1). The transition between the states of the FPMC can be viewed as a fuzzy
relation with fuzzyrelationmatrixH.Hence, insteadofmatrixmultiplication,weareusingcompositionoftwo

fuzzy relations (max-mincomposition).
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DEFINITIONS3.3

AFPMCissaidtobehomogeneous, ifthefuzzytransitionpossibiIityfromstate‘i'atstepmtostate‘j’atstepndoe

snotdependonmandn,butonlyonthe difference n-m.

i.e.,fiij(n,m)=fijj(n—m) H(n,m)=H(n-m).

THEOREM 3.2

Consider a homogeneous FPMC {X(n), n = 0, 1, ..} with m states and with fuzzy
Transitionpossibilityfiij. Thenforalln,,n,20,H(n,+n,)=H(n,)®H(n,).

PROOF:

Consider

™tz = [I{X(n, +ny) = jl X(0) = i}

=maxj_, min[M(n,), ﬁkj (n,)]

Note that max; ( ﬁij)hence proved and itis called the Chapman-Kolmogorov equation of FPMC.Hence

ByinductionH(n)=H-

DEFINITION 3.4

Consider a FPMC with m states. Then thefuzzypossibilityofbeinginstate |
atnthstepisgivenby,fi(n)=I{X(n)=i).Andtherowvector, P(n)=[ Bo(n).P1(n),-.-.Bm(n) ]
iscalledthestatefuzzypossibilitydistributionatthen®step.Andwe ]

denotethelimitingstatefuzzypossibilitydistributionaslimn—» oo P(n)=I"

3.2 Classification Of The States Of Afpmc

In this subsection, we are considering a homogeneous FPMC with m states.
DEFINITION3.5
Let £;; = sup;( f;;(n)) where f;;(n)the fuzzy possibility of the first time visit to stage j

In the probability space, positive recurrent is defined in terms of mean recurrence time where

itisnotpossibleforFPMC.Ifwedefinethemeanrecurrencetimeforarecurrentstate‘i'asﬂi:

supk[inf(k, f ii(k))], since the k-values are positive integers and f’ 5iare triangular fuzzy numbers

on[0,1],weget[inf(k, fii(k))] =fii(k)providedk=0.Hence,fii=[supkfii(k)]=fii=(1,1,1)which is always
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finite. Hence the positive recurrence for a state of FPMC is defined as follows.

DEFINITION 3.6

A state ‘iI’is transient iffthere is a fuzzy possibility that the processwillneverreturntostate‘i’
andFii<(1,1,1).
DEFINITIONS3.7

IfthepowersoftheFTPMHconvergein n steps to a non-periodic solution, then the associated FPMC is
said to be a periodic.

4 ERGODICITY OF FPMC

For FPMC, the limiting FTPMwill have stationary solutions depends on the initial state. Hence,
in * the ergodicity is defined as follows.

DEFINITION 4.1

A FPMC is said to be ergodic if it is aperiodic and has limiting FTPMwith identical rows.
THEOREMA4.1

LetH3x3bethefuzzytransitionpossibilitymatrixofaFPMCwiththreestates. Then FPMC s

ergodic, if Hpossessthefollowingproperties.

« Hhasatleastone columnj,insuchawaythatall then triesofj,areequalto(1,1,1).

« Ifmax;( hy;)for each i(excludingthej,columnandrow)arenot thediagonalentries,thenf; , >
minmax;(h;;) Vj and for some k.1f there ishy ,, = minmax;(h;) a diagonalentry,

then rljlk = 71k1k1'

. Ifadiagonalentrylflii(i;tjl)oﬂ:listheIargestelementinithcolumn,then71,-11- > hy.lfthereis Ay >

h; jthenhj, i>hjj.

PROOF:
To get the rows of the limiting FTPMto be identical, the FTPMshould be converge and the

entries in each column of the Ilimiting. FTPMshouldbeequal. Letusassume that
Hsatisfiestheabovethree properties. Now we prove that there exist a liming FTPM with

identicalrowscorrespondingtoH.
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CASE: 1

SincetherowsoftheFPMCarefuzzypossibilitydistributions,therowmaximumofeachrowof

His(1,1,1).Lettheentries ofj"columnbeequalto(1,1,1). Then, thiscolumnentrieswil lbe

1

retainedinthehigherpowersofH.. In the remaining part of this proof, we have considered

bymax; ( k;;)for each jexcludingjthcolumnandrow.
CASE: 2

Let none of the column maximums be the diagonal entries of H. Since the given FPMC has

three states and the diagonal entries will not be the column maximums, the maximum entries of the

i and j** column will be h;;. Let h;; > min{ h

ij » ;3. Since each row’s jt* entry is (1,1,1) and

hj,; = min{ h;; , R;;}, the entries of i*column H? are equal to &; ;. And in the j™column HZ, A2
( fl]zlj = rll] lf rljli = rll] or rl]zli = rljli lf rljli = rll] Even though rljli = mln{ rl]l ,rlij}, if there is

a diagonal entry h;; > min{h;;, h;;}, thenhl', = h;;. If h; ; = hy;then the entries of the i*" column of

H? are equal to h;

Jai-

Since h;; = hjand  hj; = min{ by kY, R IR = Ry if Ry <

rlij or fl]zlj = Tl lf Tl ;< rll]] is theﬁﬁl = Tl

Jal Jil — j1i

Hence we get the limiting FTPM with identical

rows
CASE: 3

Suppose that max, ( hy;) = h;;and andh; ; > h; Then fzjljz = min{hy, hy;}

Jilt =
Since 71]'11' = rl]]and rl]] > min {rlii,rlij}, rl]zlj[rl]zlj = rll] lf 71]'11' = rll] or fl]zlj = 71]'11' lf 71]'11' <
h;;] will be the largest in the j" column. In A3, all the entries of j"" column become equal to fljljz.
Hence we attain the limiting FTPMwith identical rows.

THEOREM4.2

ForahomogeneousirreducibleergodicFPMC,Ietf]:Iimn_)OO fi};,j20.Then,

I=(T1,12,...(Tm)isthegreatesteigenfuzzyset(EFS)ofl® H=Tsuchthat®il=(1,1,1).Andlis  called  the

steady state of FPMC.

PROOF:
The existence of I; = lim,,_,,, 7}
#(X(n + 1) = j) = max;{min [f(X(n + 1) = j)|X(n) = )]}

= max;{min[#;(n), 7;;]}
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= max;{min [Tlll_)rgo pi(n), 1}

= max;{min[f;, #;]}

Since the given FPMC is ergodic, therows of its limiting transition matrix are equal to the
greatest EFS of the fuzzyrelationdefinedbyPwhichhasbeenprovedin[1], therowsoft helimiting

FTPMH are equal to the greatest EFS of ' =T @ H and also Tj = lim,,_,, 7", [ = ([, 5, ..., Ty)is
the greatest EFSof ' =T ® H and @; I} = (1,1,1).

4 EXAMPLE
The FTPMof FPMC is,

(0.1,0304) (111) (0.3,04,0.6)
H=| (0.1,02,05) (1,11) (0.3,05,0.6)
(0.1,04,05) (111) (0.4,0.6,0.7)

o (0.1,0405) (L1,1) (0.3050.6)
ThenH2=F3.=  .[(0.1,0405) (111) (0.3050.6)
(0.1,0405) (L1,1) (04060.7)

Since the limiting FTP Mconverges at T = 2 with non-identical rows, the given FPMC is not
ergodic. And the steady state for this FPMC will not exist

5 CONSUMMATION

In this article, we have considered a map, called fuzzy possibility on the ample field of the
universe X and have proved that if there exists a normalized type 2 fuzzy set on X, then thefuzzy

possibility constructs a possibility space onX. On this fuzzy possibility space, we have defined the

FPMCandtherowsofitsFTPMH-And we have classified its states. We have considered a FPMC with
three states and have found out the necessary conditions for its ergodicity. we have proved that, if a

FPMC is ergodic, then its steady state is the greatestEFS of the fuzzy relation defined by H -

ACKNOWLEDGMENT

We thank the management of SSN Institutions and the Principal for providing necessary facilities
to carry out this work.

REFERENCES

IJSRR, 8(2) April. —June., 2019 Page 4238




B. Praba et al., IISRR 2019, 8(2), 4232-4240

1. Earnest LazarusJ, Piriyakumar.V andSreevinotha, On the Differentiability of Fuzzy Transition

Probability of Fuzzy Markov Chains. International Research Journal of Engineering and
Technology (IRJET). 2015; 2(8). 201-208

2. Avrachekov K.Eand Sanche. E. Fuzzy Markov Chain. Specificities and Properties. Fuzzy

SN

o

[{e)

10.

11.

12.

13.

14.

15.

Optimization and Decision Making 2002; 1: 143-159.
Kruse R, EmdenR.B and Cordes. R. Processor Power Considerations-An Application of
Fuzzy Markov Chains. Fuzzy Sets and Systems 1987; 21: 289-2909.

. Bhattacharrya M. Fuzzy Markovian Decision Process. Fuzzy Setsand Systems 1998; 99:273-

282.
Klir G.J and Yuan. B.Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice
Hall,2002:356-361

. Buckly J.Jand Eslami. E. Fuzzy Markov Chains Uncertain Probabilities. MathWare and Soft

Computing 2002; 9: 33-41.

Sujatha. Rand Praba. B. A Classification of Fuzzy Markov Model. Proceeding soft he
International Conference on Mathematics and Computer Science.2007; 494-496.

Sujatha.R and Praba. B. Analysis of Fuzzy Markov Model Using Fuzzy Relational
Equations.The Journal on Fuzzy Mathematics 2008; 16

. Buckly J. J, Feuring and Hayashi. Y. Fuzzy Markov Chains, Proc. 9th IFSA World Congress

and 20th NAFIPS International Conference, 2001:2708-2711.

Janssen.H, Cooman G. D. and Kerre. E. KFirst Result for Mathematical Theory of
Possibilistic Markov Processes. Proc. of Information Processing and Managment of
Uncertainty in Knowledge Based System. 1996; 11 : 1425-1431.

Praba. Band Sujatha. R Fuzzy Markov Model for Web Testing. International Conference on
Advances in Computing, Control, and Telecommunication Technologies 2007; 21: 111-120.
Qingsong Wang, Ming Cheng, Zhe Chen and Zheng Wang. Steady-State Analysis of Electric
Springs With a Novel Control. IEEE Transactions on Power Electronics. 2015; 30 (12).
Sanchez E. Eigen Fuzzy Setsand Fuzzy Relations. J.Math. Analysis and Applications 1981,
81:399-421.

Sanchez E. Resolution of Eigen Fuzzy Sets Equations, Fuzzy Sets and Systems 1978; 169-
74.

Thomson. M. G. Convergence of Powers of a Fuzzy Matrix. J. Math. Analysis and
Applications 1977; 57: 476- 480.

IJSRR, 8(2) April. —June., 2019 Page 4239



B. Praba et al., IISRR 2019, 8(2), 4232-4240

16. Wang.Y Multiscale uncertainty quantification based on a generalized hidden Markov model.
Journal of Mechanical Design 2011; 133: 310-321

17. Yoshida.Markov.Y. Chains with a transition possibility measure and fuzzy dynamic
programming. Fuzzy Sets and Systems 1994; 66: 39-57.

IJSRR, 8(2) April. —June., 2019 Page 4240



