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ABSTRACT

The difference equations manifest themselves as mathematical models describing real life
situations in probability theory, queuing problems, statistical problems, stochastic time series,
combinatorial analysis, number theory, geometry, electrical networks, genetics in biology,
economics, psychology, sociology, etc., In this paper, we discuss results on | -difference operator

with two variable and its inverse
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1.INTRODUCTION
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The theory of difference equations has grown tremendously during the last several years and
it now occupies the central position in applicable analysis and will no doubt continue to play a vital
and inevitable role in mathematics as a whole in the future as well, The basic theory of dilJerence
equations is based on the operator A defined as
Au(k) =u(k+1)-u(k), ke N={0,1,2,3.....}.Eventhough many authors have suggested the definition of
Aas Au(k)=u(k+l)-u(k), ke R, le R — {0}, (1.2)

But recently, E. Thandapani, M. M. S. Manuel, G.B. A. Xavier [6] considered the definition
of A as given in (1.1) and developed the theory of dilJerence equations in a dillerent direction. For
convenience, the operator A defined by (1.1) is labelled as Ag;y and by defining its inverse A(‘g many
interestin results and application in number theory were obtained.

Definition: 1.1 Letv(k) be a real valued function on (-o0,00) and [ # 0. Then the [-difference

operator, denoted by Ay, on v(k) is defined as

Ay v(k) = vk +1) —v(k) (1.2)
and the inverse of the [- difference operator, denoted by A(‘g, on v(k) is defined as
if Ay v(k) =u(k), thenv(k) = A(_S u(k) (1.3)
Proportion: 1.2 Let (e*) be a real valued function on (-o0,00) and [ # 0. Then we have
(DA (eF) =e (e —1)" (1.4)
(i) A"(e*th) = ek*i(el — 1) (1.5)
(fii) A" (e*t™) = ektni(el — 1) (1.6)
-n ek
(iv) A" (e") = " 1.7
-n ek+l
(v) A (et = W (1.8)
. -n k+nly — ek+nl
(i) 57" (e ™) = g (1.9)

Proof:
(i) By definition
A(eF) = ekttt — ek = ek(el — 1)

A% (e?) = ek (el — 1) (et — 1) = ek (el — 1)?

AB(e®) = ek (el —1)%(e! — 1) = ek (e! — 1)3
Continuing this process we get the result
(i1),(iii) The proof is similar to (i)
(iv) By definition

A(e*) =ek(e! - 1)
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k

Az_l(ek) = (eleﬁ
_2 B ek B ek
A = D@ oD T @ 12
Az_3(ek) = e’ = e

(el =1)2(e!=1) (! =-1)3
Continuing this process we get the result.
(V),(vi) The proof is similar to (iv)
Theorem :1.3 For the real valued function u(k) and v(k) then
A" (klog k) = X7_o(=1)! [nc;(k + (n — j)Dlog (k + (n = j)D)] (1.10)
Proof: By definition
A(klogk) = (k + 1) log(k + 1) — klogk
A (klog k) = A(A(klogk))
= (k+ 2D log(k +21) — (k +1)log(k + 1) — (k + 1) log(k + 1)+ klogk
= (k + 20) log(k + 21) — 2(k + ) log(k + 1) + klogk
A (klog k) = Ay(A,*(klog k))
= (k + 31) log(k + 31) — 3(k + 21) log(k + 21) + 3 (k + 1) log(k + 1) — klogk
A*(klog k) = Ay(A,° (klog k))
= (k + 4l) log(k + 41) — 4(k + 31) log(k + 31) + 6(k + 21) log(k + 21)
—4(k + 1) log(k + 1) + klogk
Proceeding like this, we get proof of this theorem.

Corolary:1.4 For the real valued function u(k) and v(k) then
8,"(k(logk)®) = Y (=1 [nc;(k + (n = NDloglk + (n = HI)*]
j=0

Proof: The proof follows by taking logk = (logk)®in theorem (1.3)
Corolary:1.5 For the real valued function u(k) and v(k) then

8" (e(logh)) = Y (=1 gyl + (= 1) log(k + (n = 1)
j=0

Proof: The proof follows by taking logk = (logk)* in (1.3)
Theorem :1.6 For the real valued function u(k) and v(k) we have
A (kek) = (et — 1) [kek (el — 1) + nlekt! (1.11)
Proof: By definition
A(ke®) = (k + 1)e*tt — ke*
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= ke*(e! — 1) + lek*!
A2(ke*) = A (A(ke"))
= (e! — 1)( kek(e! — 1) + Lek*L) + [ek+2l _ [+
= (e! = D[ kek(et — 1) + 2le**]
Al3(k€k) = Al(Azz(kek))
= (e! = D[(e! — 1) ke* (et — 1) + Lkt + 2 [eF+2L — 21e**
= (e! — 1)?[ke*(e! — 1) + 3lekt!]
Al4(k€k) = Al(Az3(k€k))
= [(e! — 1)?[(e! — 1) ke¥ (et — 1) + lek*! + 3 [ek+2l — 3lekt]]
= (e! —1)3[ke*(e! — 1) + 4le*t
Continuing like this, we get proof of this theorem.

Theorem :1.7 For the real valued function u(k) and v(k) we have
AT (keR) = ﬁ [ke*(e! — 1) — nlekt!] (1.12)
Proof: By product formula,

A (u(k)v(k)) = u(k)A, (w(k)) — A, A, (wk + D)Awu(k)]
A (keR) = kAT (eR) — A7 A T (@R A(R)]

kek 1
ATk = - oIl e KT
B kek lek+l
T (et -1) (el —1)?
- (eTll)z[ke"(e’ —1) - le**]
, 1 1 .\ l k+l
A7 (kek) = ( —1y {(e )m[kek(el —1) — lek+] - (ef_ ]_)}

. 1 1 .\ 21 k+l
Al (kek) — ( 1)3 {(e )m[kek(el — 1) — lek l] _ (ele_ 1)}

1
NCGENE
Repeatedly like this, we get proof of this theorem

————[kek(e! — 1) — 3le¥*]

Theorem :1.8 If nis a Positive integer and 1;>0, then

Dy (B, A, e Ay A €F) = ([T, (61 — 1)) (1.13)
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Proof: By definition

A (€F) = ekth — ek = ek(eh — 1)

Ay, (A, e¥) = ek(elr —1)(e'2 — 1)

Ay, (8,0 ") = ek(elr —1)(e'2 — 1)(e" - 1)

Ay, (B, 0,0 ") = ek(elr —1)(e2 —1)(eB — 1)(e™ — 1)
Proceeding like this, we get proof of this theorem

Theorem :1.9 If nis a positive integer and 1;>0, then

ek

-1 -1 -1 -1 -1 -1 —
A HAL A A T e AT TR = e (1.14)
Proof: By definition
_ k
Al1 l(ek) = (ele1—1)
AN, k) =
L2 b €)= o) (elz-1)
AN, A, T eR) = e’
b VWV T ~ (el —1)(elz — 1)(els — 1)
Continuing this way, we get proof of this theorem.
Theorem :1.10 If nis a Positive integer and 1;>0, then
Ay (B, A, e A A RER)
n
= (nelz —1)kek+ 1, (2 — 1)(els — 1) ... (eln — 1)ek+ha
i=1
+l (e —1)(els —1) ... (eln — 1)ektl + [, (el — 1)(els — 1) ... (el — 1)ektl
o e e L (BT = 1) (6 — 1) L (el — 1)eRF (1.15)

Proof: By definition
Ay (ke¥) = (e'r — D)kek + lje+h

Alz(Allkek) = (el —1)(el2 — Dke* + (elr — 1) ,ektl2 + (elz — 1) ek th
A, (A,AL keR) = (el — 1)(e'2 — 1)(e's — Dke* + (elr — 1)(e'2 — 1)Ize**s

+(elr —1)(ebs — 1)Lek 2 + (efz — 1)(els — 1) ek th
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Proceeding like this, we get proof of this theorem

Theorem :1.11 If nis a positive integer and 1;>0, then

kek

-1 -1 -1 -1 -1 -1 —
By By By, T BT e AT T RER) = T, (el — 1)
llek+ll lzek+lz
C(eh—1)2(ele —1)(es —1)...(eln—1) (el —1)(elz —1)2(els —1)....(e!n — 1)
k+ly

le
(elr —1)(elz — 1)(ets — 1) .... (eln-1 — 1)(eln — 1)2

(1.16)

Proof: By definition

A, (ke®) = [ke* (et — 1) — Lie*+h]

-1 -1, _ky — 1 l 1 k(,l k+l Lekth
A, (A ke )—m (el_l)m[ke (elz2—1)—Le 2]_(812—1)

kek llek+ll lzek+lz
T(eh-D(e—1)  (eh-1%ez-1) (el - 1)(elz —1)2

_ _ _ 1 1
Al3 1(A12 1Al1 1kek) = (el1 — 1)(612 — 1) {(613 — 1)2 [kek(el3 — 1) — l3ek+l3]}
llek+ll lzek+lz

(e =D~ 1)(el —1) (e —1)(elz — 1)2 (el 1)

. 1 1 n kek llek+ll
Ao (e A k) = G T e —D(eb — 1) (eh — D(e - D(eb — 1)
lzek+lz l3ek+l3

et -k -12(es —1) (el —1)(elz — (el — 1)?
Continuing this process, we get proof of this theorem
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