
V. Duraimurugan et al., IJSRR 2019, 8(2), 4107-4128 

IJSRR, 8(2) April. – June., 2019                                                                                                         Page 4107 
 

    Research article           Available online www.ijsrr.org          ISSN: 2279–0543 
 

International Journal of Scientific Research and Reviews 
 

On The Lattice of Subgroups of 3x3 Matrices over Z2 
 

 V. Duraimurugan*1 and  A. Vethamanickam2 
 

1Research Scholar, Department of Mathematics, Manonmaniam Sundaranar University, 
Abishekapatti, Tirunelveli-627 012,TamilNadu, India E-mail: vvndurai@gmail.com 

2Associate Professor, Department of Mathematics, Rani Anna Government College for Women, 
Ganhinagar, Manonmaniam Sundaranar University, Abishekapatti,Tirunelveli-627 012, TamilNadu, 

India dr.vethamanickam@yahoo.co.in  

ABSTRACT 

 Let ऑ be the set of all 3 X 3 non-singular matrices , where a,b,c,d,e,f,g,h,i are 

integers modulo p. Then ऑ is a group under matrix multiplication modulo p, of order 

let G be the subgroup of ऑ defined by 

 Then G is of order  Let 

L(G) be  the lattice formed by all subgroups G. In this paper, we give the structure of L(G) in the 

case when sp=2. 
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INTRODUCTION 
Let L(G) be the lattice formed by all subgroups of a group G. Study on Lattices of subgroups 

of groups has quite a long history, starting with Richard Dedekind’s work10 in 1877, including Ada 

Rottlaender’s paper47 from 1928 and later numbers important contributions by Reinhold Baer, 

Qystein Ore, Kenkichi Iwasawa, Leonid Efimovich Sadovskii, Michio Suzuki, Giovanni Zaher, 

Mario Curzio, Federico Menegazzo, Roland Schmidt, Stewart Stonehewer, Giorgio Busetto, and 

many-many others. 

A celebrated theorem of O. Ore12 in 1938 states that “If L(G) is a distributive lattice, any 

finite set of elements from G generates a cyclic subgroup and vice-versa.” Thereafter, subgroup 

lattice theory has witnessed imany contributions namely O. Ore12, R. Baer1, K. Iwasawa8, A. W. 

Jones9, Michio Suzuki11, 2, 15 etc., 

In 1992 Karen M. Gragg and P. S. Kung6 have attempted to characterize the finite groups 

with a consistent lattice of subgroups. In that endeavour, they discovered that the lattice of 

subnormal subgroups of a finite group is consistent and dually semimodular (lower semimodular). 

A. Vethamanickam has cited from their theorem and has given a counter example in his thesis16. 

Suzuki’s11 results are mainly concerning L-isomorphic groups. i.e, groups whose lattices of 

subgroups are isomorphic. 

Our original attempt was to study some lattice theoretic properties of L(G) where G is the 

group of 3×3 matrices whose determinant is 1 modulo p, where p is a prime. In this paper we give 

the structure of L(G) when p = 2. In section 1, we give the  preliminary  definitions  needed  for  the  

development  of  the  paper  and  a  lemma  for  finding  the  order  of G. 

1. PRELIMINARIES 

Definition 1.1: 
 A partial order on a non-empty set P is a binary relation≤ on P that is reflexive, antisymmetric 

and transitive. The pair (P, ≤) is called a partially ordered set or poset. A poset. (P, ≤) is totally 

ordered if every   x, y ∈ P are comparable, that is x ≤ y or ≤ x. A non-empty subset S of P is a chain 

in P if S is totally ordered by ≤. 

Definition 1.2: 
 Let (P, ≤) be aposet and let S ⊆ P. An upper bound for S is an element x ∈ P for which s ≤ 

x∀ s ∈ S. The least upper bound of S is called the supremum or join of S. A lower bound of S is an 

element x∈ P for which x ≤ s ∀ s ∈ S. The greatest lower bound of S is called the infimum or meet 

of S. Poset (P,≤) is called a lattice if every pair x, y ∈ P has a supremum and an infimum. 
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Definition 1.3: Interval 

For a, b ∈ L, a≤ b, we define the intervals: 

The closed interval [a, b] = {x: a ≤ x≤ b}. 

The half – open intervals 

(a, b] = {x: a < x≤ b} 

[a, b) = {x: a ≤ x< b} 

The open interval 

(a, b) = {x: a < x < b} 

Definition 1.4: Semimodular lattice 
 A lattice L is called semi modular if whenever a covers a ^ b, then a v b covers b, for all a, b∈ 

L. 

Definition 1.5: Join- irreducible element  
 An element a of a lattice L is called join-irreducible if x ᴠ y =a implies either x=a or y=a. 

Definition 1.6: Consistent Lattice 

 A Lattice L is said to be consistent if whenever j is a join-irreducible element in L, then for 

every x ∈ L, x ᴠ j is join-irreducible in the upper interval [x, 1]. 

Theorem 1.7: Lagrange’s Theorem 
 If G is a finite group and H is a subgroup of G, then order of H is a divisor of order of G. 

Definition 1.8:  
 If G is a group and a ∈ G, then order of a is the least positive integer m such that . 

 Result 1.9:  
 If G is a finite group and a ∈ G, then order of a is a divisor of order of G. 

Result 1.10:  
 If H is a non empty finite subset of a group G and H is closed under the binary operation in 

G,  then H is a subgroup of G. 

Theorem1.11: Sylow’s Theorem 
 If p is a prime number and  then G has a subgroup of order . If   and 

 then G has a subgroup of order . 

Definition 1.12: p-Sylow Subgroup 
 A subgroup of G of order , where  but    is called a p-Sylow subgroup 

of G. 
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Theorem 1.13: Sylow’s Theorem 
 The number of p-sylow subgroups in G, for a given prime, is of the form 1+kp. In particular, 

this number is a divisor of order of G, that is 1+kp .  

Definition 1.14: 
 A subgroup N of G is said to be a normal subgroup of G if for every g ∈ G and n ∈ N, g 

n  

Result 1.15: 
If H is the only subgroup of order H in the finite group G, then H is a normal subgroup of G. 

Theorem 1.16: 
 Let G be a group of order pq, where p and q are distinct primes and p<q. then G has only one 

subgroup of order q. This subgroup of order q is normal in G. 

Result 1.17: 
 If N is a normal subgroup of G and H is any subgroup of G, then NH is a subgroup of G. 

Result 1.18: 
If N and M are two normal subgroup of G, then NM is also a normal subgroup of G. 

Definition 1.19: (Kernel of the Homomorphism) 
 Let   be a homomorphism. The Kernel of f, (denoted by Kerf) is defined by 

  where  is the identity of  

Theorem 1.20(First Isomorphism Theorem) 

 If f:  be an onto homomorphism with K=ker f, then . In other words, every 

homomorphic image of a group G is isomorphic to a quotient group of G. 

Definition 1.21: (General Linear Group) 
 The set of nxn Matrices over Zp with non zero determinant forms a non abelian group under 

matrix multiplication and is called the General Linear Group, denoted by GL ( n,zp). 

Definition 1.22: (Special Linear Group) 
 The set of nxn Matrices over Zp with determinant value 1 forms a non abelian group under 

matrix multiplication and is called the Special Linear Group, denoted by SL ( n,zp). 

We first prove the following: 

Lemma 1.21: 

Let ऑ=      
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ऑ is a group under matrix multiplication modulo p. 

Let .   .  

Then   

Proof: 

We first prove that   

 We will count the n x n matrices whose rows are linearly independent. We do so by building 

up a matrix from scratch. The first row can be anything other than the zero row so there are pn-1 

possibilities. The second row must be linearly independent from the first, which is too say that it 

must not be a multiple of the first. Since there are p multiples of the first row, there are pn-p 

possibilities for the second row in general, the ith row must be linearly independent from the first i-1 

rows, which means that it cannot be a linear combinations of the first i-1 rows. There are pi-1 linear 

combinations of the first i-1 rows, so there are pn-pi-1 possibilities for the ith row. Once we build the 

entire matrix this way, we know that the rows are all linearly independent by choice. Also, we can 

build any n x n matrix whose rows are linearly independent in this fashion. Thus there are (pn-1) (pn-

p) (pn-p2) …… (pn-pn-1) matrices.  

Next we claim that   

 Consider the homomorphism det: GL ( n,zp).Zp-{0}  . This map is Surjective; that is, the 

image of GL ( n,zp)under det is the whole space Zp-{0}  . This is true because, for instance the matrix 

 
is an invertible n x n matrix of determinant a. Since SL ( n,zp).is the Kernal of the homomorphism, it 

follows from the first Isomorphism theorem that GL ( n,zp)\ SL ( n,zp)  Zp-{0}.   

Thus, we have proved  = . 

2. IN THIS SECTION, WE ARRANGE THE ELEMENTS OF G ACCORDING 

TO THEIR ORDERS: 
 Let  be the set of all 3 x 3 non-singular matrices over Z2. Thus  is a group under matrix 

multiplication modulo 2 and 
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       =   

       =  

                                           =  

                                            = 168 

Let G be the subgroup of  defined by 

 

Then  

                  =  

                  =  

       =  

       = 168 

2.1 Element Of Order 1(One Element) 

 

2.2 Elements Of Order 2 (21 Elements) 

,  

 . , 

 
2.3 Elements Of Order 3 (56 Elements) 
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2.4 Elements Of Order 4 (42 Elements) 

 

 

 

 

 

 
2.5 Elements of Order 7 (48 Elements) 
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3. IN THIS SECTION, WE FIND ALL THE SUBGROUPS OF G OF 

DIFFERENT ORDERS: 
 According to Lagrange’s theorem. We need to check only among the divisors of 168 for the 

orders of the subgroups. 

3.1 Subgroups Of Order 2 
Let H be an arbitrary subgroups of G of order 2. Then the elements of H must have order 1 or 

2. 

Thus, all the subgroups of G of order 2 are obtained as follows: 
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3.2. Subgroups Of Order 3 
                   Since 3 is a prime number, any subgroup of G of order 3 is cyclic and hence it is 

generated by an element of order 3. 

                 Thus, all the subgroups of G of order 3 are obtained as follows: 
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             Since . 

             Therefore, G has a 3 – sylow subgroup of order 3.  

             The number of 3-sylow subgroups is of the form 1+3k   and 1+3k |  

             Therefore,  

             The possible values for k are 0,1,2 and 9. 

             Therefore, the maximum number of 3-sylow subgroups of G of order 3 is 28 when k=9. 

             So, these are the only subgroups of order 3. 

3.3 Subgroups Of Order 4 
 Let L be an arbitrary subgroup of G of order 4. Then the elements of L must have orders 1,2 or 

4. If L contains an element of order 4, then L is generated by an element of order 4. Thus, all the 

subgroups of G of order 4 are obtained as follows:                     
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          Since first twenty one subgroups of order 4 contains exactly two elements of order 4 and we 

have only forty two elements of order 4 and first twenty one sub groups of order 2 and next fourteen 

subgroups of order 4 contains exactly 3 elements of order 2, there will be no other subgroups of 

order 4 except the above thirty five.  

Here,  
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3.4 Subgroups of Order 6 
                Let M be an arbitrary subgroup of G of ordered 6. Since |M| = 2x3, by sylow’s theorem M 

has exactly one subgroup of order 3. 

Thus, all the subgroups of G of order 6 are obtained as follows:                   
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Here, 

 
H14  

 

 

 

 

 

 
Since each subgroup of order 6 contains two elements of order 3 and we have only 56 

elements of order 3 and three elements of order 2 and we have only 21 elements of order 2, there will 

be no other subgroups of order 6 except the above twenty eight.  

3.5 Subgroups Of Order 7 
Since . 

             Therefore, G has a 7 – sylow subgroup of order 7.  

             The number of 7-sylow subgroups is of the form 1+7k   and 1+7k |  

             Therefore,  

             The possible values for K are 0 and 1. 

             Therefore, the maximum number of 7-sylow subgroups of G of order 7 is 8 when k=1. 

             So, these are the only subgroups of order 7. 

Thus, all the subgroups of G of order 7 are obtained as follows:                    
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3.6 Subgroups Of Order 8 

Since . 

             Therefore, G has a 2 – sylow subgroups of order 8.  

             The number of 2-sylow subgroups is of the form 1+2k   and 1+2k |  

             Therefore,  

             The possible values for K are 0 ,1 and 10. 

             Therefore, the maximum number of 2-sylow subgroups of G of order 8 is 21 when k=10. 

             Since G has no element of order 8, the elements of subgroups of order 8 must have order 1,2 

or 4.  

Thus, all the subgroups of G of order 8 are obtained as follows:                     
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3.7 Subgroups Of Order 12 
 Let Q be an arbitrary subgroup of order 12. Since  by multiplying a 

subgroup of order 3 and a subgroup of order 4, that is, by finding  for all i, j , we get a subset of 

more than 12 elements or elements of order 7, which cannot exist in a subgroup of order 12. 

 Hence we get the conclusion that a subgroup of order 12 cannot exist. 

Subgroups Of Order 14 

 Let R be an arbitrary subgroup of order 14. Since  by multiplying a 

subgroup of order 2 and a subgroup of order 7, that is, by finding  for all i, j , we get in each 

case elements of order 3 or order 4 , which cannot exist in a subgroup of order 14. 

 Hence we get the conclusion that a subgroup of order 14 cannot exist. 

3.8 Subgroups Of Order 21 
 Let S be an arbitrary subgroup of order 21. Since the number of 7-sylow 

subgroups of order 7 in S is 1+7K and 1+7K/3. The possible value of K is 0 only.  
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 Hence the number of subgroups of S of order 7 is 1. 

 Similarly, the number of 3-sylow subgroups of order 3 in S is 1+3K and 1+3k/7. The 

possible values of K are 0,2. Hence the number of subgroups of order 3in S is either 1 or 7.  

 There are two  possibilities : 

   (i). The number of subgroups of order 7 is 1 and of order 3 is 1. 

   (ii). The number of subgroups of order 7 is 1 and of order 3 is 7. 

Case: (I) 

 Let the one subgroup of order 7 in S be N and the one subgroup of order 3 in S be K. 

then N and K are normal in S. 

 Hence T=NK must be abelian, but which is not true by checking all possibilities of N 

and K . Thus, we get the conclusion that this case cannot occur. 

Case: (II) 

 Taking a subgroup of order 7 at a time, combining this with seven subgroups of order 

3, we are able to determine the following eight subgroups of order 21 by trial. Since each subgroup 

of order 21 contains one subgroup of order 7 and we have only eight subgroups of order 7, there are 

exactly eight subgroups of order 21. 

Thus, all the subgroups of G of order 21 are obtained as follows:                     
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Here  

 

 

 

 

 

 

 

 
3.9 Subgroups of Order 24: 
 Let T be an arbitrary subgroup of order 24. Since  by multiplying a 

subgroup of order 3 and a subgroup of order 8, that is, by finding  for all i, j , we get a subset of 

more than 24 elements, which cannot exist in a subgroup of order 24. 

 Hence we get the conclusion that a subgroup of order 24 cannot exist. 

3.10 Subgroups Of Order 28: 
 Let U be an arbitrary subgroup of order 28. Since  by multiplying a 

subgroup of order 4 and a subgroup of order 7, that is, by finding  for all i, j, we get  in each case 

element of order 3, which cannot exist in a subgroup of order 28.Hence we get the conclusion that a 

subgroup of order 28 cannot exist. 

3.11 Subgroups Of Order 42 
 Let V be an arbitrary subgroup of order 42. Since  by multiplying a 

subgroup of order 2 and a subgroup of order 21, that is, by finding  for all i, j, we get a subset of 

more than 42 elements, which cannot exist in a subgroup of order 42.  Hence we get the 

conclusion that a subgroup of order 42 cannot exist. 
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3.12 Subgroups of Order 56 
 Let W be an arbitrary subgroup of order 56. Since  by multiplying a 

subgroup of order 7 and a subgroup of order 8, that is, by finding  for all i, j, we get  in each case 

element of order 3, which cannot exist in a subgroup of order 56.  Hence we get the conclusion that 

a subgroup of order 56 cannot exist. 

3.13 Subgroups of Order 84 
 Let X be an arbitrary subgroup of order 84. Since  by multiplying a 

subgroup of order 4 and a subgroup of order 21, that is, by finding  for all i, j, we get a subset of 

more than 84 elements, which cannot exist in a subgroup of order 84.Hence we get the conclusion 

that a subgroup of order 84 cannot exist. 

4. THE STRUCTURE OF L (G) 
 According to the above results, we have the diagram of the Lattice of subgroups of 

 whose elements have determinant values 1. 

 

 

 

 

 

 

 

 

 

 

 

 

I Row (Left to Right) : H1, H2, …, H21 and K1, K2, …, K28. 

II Row (Left to Right) : L1, L2, …, L35 and M1, M2, …, M28 and N1, N2, …, N8. 

III Row (Left to Right) : P1, P2,…, P21 and S1, S2, …, S8  
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