

Research article

Available online www.ijsrr.org

International Journal of Scientific Research and Reviews

H-Recurrent Finsler Connection

Brijendra Krishna Singh

Department of Mathematics Amity University Chhattisgarh, Raipur, India Email.: bks0509@gmail.com

ABSTRACT

The Decomposition of the normal Finsler connection tensor N^i_{jkh} of a finsler connection in the form of H Recurrent Finsler Connection and assume that decompose vector field X^i is not independent of directional arguments then thenormal projective curvature tensor are connected by recurrent Finsler connection.

KEYWORDS: Finsler, manifolds, torsion, projective, recurrence

*Corresponding author:

Brijendra Krishna Singh

Department of Mathematics

Amity University Chhattisgarh,

Raipur, India

Email.: bks0509@gmail.com

ISSN: 2279-0543

INTRODUCTION:

A Finsler manifold F_n of dimension n is a manifold F_n associated with a fundamental function $F(x, \dot{x})$, the metric tensor of (F_n, F) is given by

(1.1)
$$g_{ij} = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j F^2$$
 where $\dot{\partial}_i = \partial/\partial_{\dot{x}^i}$.

A Finsler connection of (F_n, F) is a triad $(F_{jk}^i, N_k^i, C_{jk}^i)$ of a v-connection F_{jk}^i , a nonlinear connection N_k^i and a vertical connection $C_{jk}^i[6]$. The h- and v- covariant derivatives of any tensor field V_j^i corresponding to a given Finsler connection is given by

$$(1.2) V_{j|k}^{i} = d_{k} V_{j}^{i} + V_{j}^{m} F_{mk}^{i} - V_{m}^{i} F_{jk}^{m},$$

$$(1.3) V_{j|k}^{i} = \partial_{k} V_{j}^{i} + V_{j}^{m} C_{mk}^{i} - V_{m}^{i} C_{jk}^{m}$$

where (1.4)
$$d_k = \partial_k - N_k^m \partial_m$$
, $\partial_k = \partial/\partial_{xk}$.

From a given Finsler metric we can determine various Finsler connections. In the present studies we shall use the Cartan connection which will be denoted by $C\Gamma:(\Gamma_{jk}^{-xi},G_k^i,C_{jk}^i)$. These connections can be uniquely determined from the metric function F by the following axioms:

- (A_1) The connection is h metrical i.e. $g_{ij}/k = 0$,
- (A_2) The connection is v metrical i.e. $g_{ij}/k = 0$,
- (A_3) The deflection tensor field D_k^i vanishes,
- (A_4) The (h) h torsion tensor field T_{jk}^i vanishes,
- (A_5) The (v) v torsion tensor field S_{ik}^i vanishes.

All these five axioms have been mentioned in [7]. The individual members of the triad are given as

$$(1.13) \Gamma_{jk}^{xi} = \frac{1}{2} g^{ih} (d_k g_{jh} + d_j g_{kh} - d_h g_{jk}),$$

$$(1.14) a) G_k^i = \partial_k G^i = \gamma_{ok}^i - 2C_{km}^i G^n,$$

$$b) G^i = \frac{1}{2} \gamma_{oo}^i,$$

$$(1.15) C_{j|k}^{i} = g^{ih} C_{jhk}, \qquad C_{jhk} = \frac{1}{2} \partial_{h} g_{jk},$$

where (1.16)
$$\gamma_{jk}^{i} = \frac{1}{2} g^{ih} (\partial_{k} g_{jh} + \partial_{j} g_{kh} - \partial_{h} g_{jk}),$$

DEFINITION (1.1):

A Finsler connection will be called h-recurrent Finsler connection $RF\Gamma$ if it satisfies the following axioms:

 $(A_1)'$ The connection is h-recurrent with recurrence vector α_k i.e. $g_{ij|k} = \alpha_k g_{ij}$.

 $(A_2)'$ The connection is v-metrical i.e. $g_{ij|k} = 0$.

 $(A_3)'$ The deflection tensor field is given by D_k^i .

 $(A_4)'$ The (h) h-torsion tensor field T_{jk}^i vanishes.

 $(A_5)'$ The (v) v-torsion tensor field S_{ik}^i vanishes.

In view of equations (1.18), (1.20) and (1.22) we find that the h-recurrent Finsler connection $RF\Gamma$ are given by

$$(1.23) F_{jk}^{i} = F_{jk}^{c} - C_{km}^{i} X_{j}^{m} - C_{jm}^{i} X_{k}^{m} + C_{jkm} X^{mi},$$

$$(1.24) N_{k}^{i} = N_{k}^{c} + X_{k}^{i},$$

(1.25)
$$C^{i}_{jk} = \overset{c}{C}^{i}_{jk} = \frac{1}{4} g^{ih} \, \dot{\partial}_{h} \, \dot{\partial}_{j} \, \dot{\partial}_{k} \, F^{2}$$

Where (1.26) $X_k^i = C_{km}^i B_o^m - B_k^i$,

$$(1.27) \ B_k^i = D_k^i + \frac{1}{2} (\alpha_o \, \delta_k^o + \alpha_k \, \dot{x}^i - \alpha^i y_k)$$

$$(1.28) X^{mi} = g^{ji} X_{i}^{m}$$

and $\begin{pmatrix} c^{i} & c^{i} & c^{i} \\ F_{jk}, N_k, C_{jk} \end{pmatrix}$ are the coefficients of Cartan connection $C\Gamma$. With the help of the equations (1.8),

(1.23) and (1.24) the (v) hv –torsion tensor $RF\Gamma$ can be written as

$$(1.29) P_{jk}^{i} = P_{jk}^{i} + X_{j}^{i} | k + C_{jm}^{i} X_{k}^{m} + C_{jkm} (X^{im} - X^{mi})$$

where P_{jk}^i is the (v) hv-torsion tensor of Cartan connection $C\Gamma$ and | means v-covariant differentiation with respect to $C\Gamma$ or $RF\Gamma$. Again using the equations (1.7) and (1.24), we get the following alternative form of (v) hv-torsion tensor of $RF\Gamma$.

$$(1.30) R_{jk}^{\nu} = R_{jk}^{i} - P_{jm}^{i} X_{k}^{m} + P_{km}^{i} X_{j}^{m} + X_{j}^{i} + C_{|k}$$

$$- X_{k}^{i} C_{|j} - X_{k}^{m} X_{j}^{i}|_{m} + X_{j}^{m} X_{k}^{i}|_{m} - C_{jm}^{i} X_{r}^{i} X_{k}^{m} + C_{rm}^{r} X_{r}^{i} X_{j}^{m}$$

THE (v) hv-TORSION TENSOR OF THE FORM $P_{ik}^i = -\dot{\delta}_k B_i^i$

In this section we shall pay our attention to that h-recurrent Finsler connection $RF\Gamma$ whose (v) hv-torsion tensor P^i_{jk} is being expressed by the following equation

$$(4.1)P_{ik}^i = -\dot{\delta}_k B_i^i,$$

where B_i^i is the tensor field of the Finsler connection (1.27). Using (4.11) in (1.29), we get

$$(4.2) \stackrel{c}{P}_{jk}^{i} = \dot{\delta}_{k} (C_{ir}^{i} B_{0}^{r}) + C_{mk}^{i} X_{i}^{m} + C_{im}^{i} X_{k}^{m} - C_{ikm} X^{mi} = 0.$$

Using $\dot{\delta}_k g_{ij} = 2C_{ijk}$ in (4.2), we get

$$(4.3) \stackrel{c}{P}_{ijk} + \dot{\delta}_k (C_{ijr} B_0^r) - 2C_{irk} C_{jm}^r B_0^m + C_{imk} X_k^m + C_{imk} X_k^m + C_{ikm} X_k^m - C_{ikm} X_i^m = 0.$$

Since C_{ijk} and P_{ijk} are symmetric in i and j, hence from (4.3), we get

(4.4)
$$S_{ijmk} B_0^m C_{imk} X_j^m - C_{jmk} X_i^m = 0.$$

Multiplying (4.4) by \dot{x}^i , we get

(4.5)
$$C_{imk} X_0^m = 0$$
.

An obvious of (4.5) is the equation

(4.6)
$$X_{j}^{i} = -B_{j}^{i}$$
 and $C_{ikm}B_{j}^{m} = C_{jkm}B_{i}^{m}$.

In the light of these observations from (4.3), we get

$$(4.7) \stackrel{c}{P}_{ijk} = C_{ikm} B_i^m.$$

Substituting these results into the equations (1.30), (1.31) and (1.32), we get

$$(4.8) R_{jk}^{i} = R_{jk}^{c} B_{j}^{i} C_{|k} + B_{k}^{i} C_{|j} - B_{k}^{m} B_{j}^{i} \Big|_{m} + B_{j}^{m} B_{k}^{i} \Big|_{m},$$

$$(4.9) P_{hjk}^{i} = P_{hjk}^{c} S_{hjk}^{i} B_{j}^{r},$$

and (4.10)
$$R_{hjk}^{i} = R_{hjk}^{c} + P_{hjm}^{c} B_{k}^{m} - P_{hkm}^{c} B_{j}^{m} + S_{hrs}^{i} B_{j}^{r} B_{k}^{s}$$
.

If we now assume that

(4.11)
$$P_{ijk}^c = C_{jkm} B_i^m \text{ holds},$$

then this assumption gives

(4.12)
$$C_{ijr}B_k^r = C_{ikr}B_j^r$$
, $C_{ijr}B_0^r = 0$ and $X_j^i = -B_j^i$.

Using (4.12) in (1.27), we get

$$(4.13) \ P_{jk}^{i} = -\dot{\delta}_{k} B_{j}^{i}.$$

Therefore, we can state.

THEOREM (4.1):

If F_n be supposed to be an n-dimensional Finsler space equipped with h-recurrent Finsler connection $RF\Gamma$ and with the deflection tensor D^i_j and recurrence vector α_k , if we further suppose that $B^i_j = D^i_j + \frac{1}{2}(\alpha_0 \delta^i_j + \alpha_j \dot{x}^i - \alpha^i y_j)$ then the (v) hv-curvature tensor P^0_{jk} of $RF\Gamma$ is given by $P^i_{jk} = -\dot{\delta}_k D^i_j$ if and only if the (v) hv-torsion tensor P^0_{jk} of the connection $C\Gamma$ is represented by $P^i_{jk} = C^i_{jm} B^m_k$ and in such a case the (v) h-torsion tensor R^i_{jk} of the hv-curvature tensor R^i_{hjk} and the h-curvature tensor R^i_{hjk} of recurrent Finsler connection $RF\Gamma$ are respectively given by (4.8), (4.9) and (4.10).

REFERENCES

- 1. Brickell, F.: A theorem on homogeneous functions, J. Lond. Math.Soc., 1967;42: 352-359.
- **2.** Hashiguchi, M.: On determination of Finsler connections by deflection tensor fields, Rep. Fac Sci. Kagoshima Univ. (Math, Phy, Chem) 1969; 2: 29-39.
- **3.** Hashiguchi, M.: On Wagner's generalized Berwald Space, J. Korean Math. Soc. 1975;12: 51-61,.
- **4.** Ikeda, F.: Some remarks on deflection tensor, Tensor (N.S.) 1990; 49:1-6.
- 5. Matsumoto, M.: A Finsler connection with many torsions, Tensor (N.S.) 1966; 17: 217-226.
- **6.** Matsumoto, M.: The theory of Finsler connections, Publ. of the study group of Geometry, 5, Deptt Maths., Okayama Univ. 1970; 120.
- 7. Matsumoto, M.: Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Saikawa, Otsa, Japan 1986; 520.
- **8.** Prasad, B.N.: On recurrent Finsler connections with deflection and torsion, Publications Shukla, H.S. and Mathe maticae, Hungaria, Singh, D.D. 1990; 37, 77-84.