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ABSTRACT 
 The Decomposition of the normal Finsler connection tensor i

jkhN of a finsler connection in the 
form of H Recurrent Finsler Connection and assume that decompose vector field iX is not 
independent of directional arguments then thenormal projective curvature tensor are connected by 
recurrent Finsler connection.   

KEYWORDS: Finsler, manifolds, torsion, projective, recurrence 
 
 
 

 

 

 

 

 

 

 

 

 

 
*Corresponding author: 

Brijendra Krishna Singh 
Department of Mathematics  

Amity University Chhattisgarh,  

Raipur, India 

Email. : bks0509@gmail.com 



Brijendra Krishna Singh, IJSRR 2019, 8(2), 4773-4777 

IJSRR, 8(2) April. – June., 2019                                                                                                         Page 4774 
 

INTRODUCTION: 
 A Finsler manifold nF of dimension n is a manifold nF associated with a fundamental 

function ),,( xxF  the metric tensor of ),( FFn is given by 

 2
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 A Finsler connection of ),( FFn  is a triad ),,( i
jk

i
k

i
jk CNF of a v-connection ,i

jkF a nonlinear 

connection i
kN and a vertical connection ].6[i

jkC  The h- and v- covariant derivatives of any tensor 

field i
jV corresponding to a given Finsler connection is given by 
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where ,)4.1( m
m
kkk Nd  .xkk   

 From a given Finsler metric we can determine various Finsler connections. In the present 

studies we shall use the Cartan connection which will be denoted by ).,,(: i
jk

i
k

xi
jk CGC  These 

connections can be uniquely determined from the metric function F by the following axioms: 

 )( 1A The connection is h – metrical i.e. ,0kgij  

 )( 2A The connection is v – metrical i.e. ,0kgij  

 )( 3A The deflection tensor field i
kD vanishes, 

 )( 4A The (h) h – torsion tensor field i
jkT vanishes, 

 )( 5A The (v) v – torsion tensor field i
jkS vanishes. 

All these five axioms have been mentioned in [7]. The individual members of the triad are given as  
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DEFINITION (1.1): 
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 A Finsler connection will be called h-recurrent Finsler connection RF if it satisfies the 

following axioms: 

)( 1 A The connection is h-recurrent with recurrence vector k i.e. .ijkkij gg   

)( 2 A The connection is v-metrical i.e. .0kijg  

)( 3 A The deflection tensor field is given by .i
kD  

)( 4 A The (h) h-torsion tensor field i
jkT vanishes. 

)( 5 A The (v) v-torsion tensor field i
jkS vanishes. 

In view of equations (1.18), (1.20) and (1.22) we find that the h-recurrent Finsler connection RF

are given by 
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CNF ,, are the coefficients of Cartan connection .C With the help of the equations (1.8), 

(1.23) and (1.24) the (v) hv –torsion tensor RF can be written as 
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where i
jkP  is the (v) hv-torsion tensor of Cartan connection C and means v-covariant 

differentiation with respect to C or .RF Again using the equations (1.7) and (1.24), we get the 

following alternative form of (v) hv-torsion tensor of .RF  
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THE (v) hv-TORSION TENSOR OF THE FORM i
jk

i
jk BP   
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In this section we shall pay our attention to that h-recurrent Finsler connection RF whose (v) hv-

torsion tensor i
jkP is being expressed by the following equation  

 ,)1.4( i
jk

i
jk BP   

where i
jB is the tensor field of the Finsler connection (1.27). Using (4.11) in (1.29), we get 
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Using ijkijk Cg 2 in (4.2), we get 
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Since ijkC and ijk
c
P are symmetric in i and j, hence from (4.3), we get 
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Multiplying (4.4) by ,ix we get 
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An obvious of (4.5) is the equation 
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In the light of these observations from (4.3), we get 
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Substituting these results into the equations (1.30), (1.31) and (1.32), we get  
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If we now assume that  

 m
ijkm

c
ijk BCP )11.4( holds, 

then this assumption gives 
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Using (4.12) in (1.27), we get 
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Therefore, we can state. 

THEOREM (4.1): 
 If nF be supposed to be an n-dimensional Finsler space equipped with h-recurrent Finsler 

connection RF and with the deflection tensor i
jD and recurrence vector ,k if we further suppose 

that )(
2
1

0 j
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j yxDB    then the (v) hv-curvature tensor 0

jkP of RF is given by 
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jk DP  if and only if the (v) hv-torsion tensor 
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c
P of the connection C is represented by 
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BCP  and in such a case the (v) h-torsion tensor i
jkR of the hv-curvature tensor i

hjkP and the h-

curvature tensor i
hjkR of recurrent Finsler connection RF are respectively given by (4.8), (4.9) and 

(4.10). 
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