K-Contra Harmonic Mean Labeling of Some Graphs

A Mydeen Bibi* and Al. Yakavi

*Corresponding author:

Dr. A. Mydeenbibi

The Standard Fireworks Rajaratnam College for women, Sivakasi, Tamilnadu, India.

Email: amydeen2006@gmail.com Mob. 9487715523.

ABSTRACT

Let G be a (p, q) graph. A function f is called a k-contra harmonic mean labelling of a graph G if $f: V(G) \rightarrow \{k, k+1, k+2, ..., k + q\}$ in such a way that the function defined as,

$$f^* : E(G) \rightarrow \{k, k + 1, k + 2, ..., k + q - 1\}$$

is an edge labeling. The graph which admits k-contra harmonic mean labelling is called k-Contra harmonic mean graph.

KEYWORDS: k-Contra Harmonic mean labeling, K-Contra Harmonic mean graphs, Path, Cycle, Comb, etc.

Corresponding author:

Dr. A. Mydeenbibi

The Standard Fireworks Rajaratnam College for women, Sivakasi, Tamilnadu, India.

Email: amydeen2006@gmail.com Mob. 9487715523.
1. INTRODUCTION

By a graph $G = (V(G), E(G))$ with p vertices and q edges we mean a simple, connected and undirected graph. In this paper a brief summary of definitions and other information is given in order to maintain compactness. The term not defined here are used in the sense of Harary 2.

A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. A useful survey on graph labeling by J.A. Gallian (2016) can be found in 1. If the domain of the mapping is the set of vertices (or edges) then the labeling is called a vertex labeling (or an edge labeling).

All graphs in this paper are simple, finite, undirected. Let G be a graph with p vertices and q edges. For a detail survey of graph labeling we refer to Gallian 1. For all other standard terminology and notation we follow Harary 2. S. Somasundaram and R. Ponraj introduced mean labeling for some standard graphs in 2013. S.S. Sandhya and S. Somasundaram introduced Harmonic mean labeling of graph. S. S. Sandhya, S. Somasundaram and J. Rajeshni Golda introduced Contra Harmonic mean labeling of graphs 9.

We have introduced K- Contra Harmonic mean labeling. In this paper we investigate the k-Contra Harmonic mean labeling behaviour of some special graphs. The following definitions are useful for our present study.

Definition 1.1 Let G be a (p, q) graph. A function f is called a k-contra harmonic mean labelling of a graph G if $\{ f(v) : v \in V(G) \} = \{ k, k+1, k+2, \ldots, k+q \}$ in such a way that the function f^* defined as

$$f^*(e = uv) = \left[\frac{\sum_{i=1}^{k+q} f^i(e)}{\sum_{i=1}^{k+q} f^i(u)} \right]$$

with distinct edge labels. The graph which admits k-contra harmonic mean labeling is called k-contra harmonic mean graph.

Definition 1.2 The union of two graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ is a graph $G=G_1 \cup G_2$ with vertex set $V=V_1 \cup V_2$ and edge set $E = E_1 \cup E_2$.

Definition 1.3 The corona of two graphs G_1 and G_2 is the graph $G = G_1 \circ G_2$ formed by taking one copy of G_1 and $|V(G_1)|$ copies of G_2 where the i^{th} vertex of G_1 is adjacent to every vertex in the i^{th} copy of G_2.

Definition 1.4 A Triangular ladder $\mathcal{TL}_{n,n} \geq 2$ is a graph obtained from a ladder L_n by adding the edges e_1, e_2, \ldots, e_n for $1 \leq i \leq n-1$ where u_i and v_i for $1 \leq i \leq n$ are the vertices of L_n. Such that u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n are two paths of length n in L_n.

Definition 1.5 An (m, n) kite graph consists of cycle of length m with n edges path attached to one vertex of a cycle.
Definition 1.6 Comb is a graph obtained by joining a single pendant edge to each vertex of a path.

2. MAIN RESULTS

Theorem 2.1 The path P_n is a k-contra harmonic mean graph for all k and $n \geq 2$.

Proof: Let $V(P_n) = \{v_i \mid 1 \leq i \leq n\}$ and $E(P_n) = \{e = v_i v_{i+1} \mid 1 \leq i \leq n-1\}$.

Define a function $f: V(G) \rightarrow \{k, k+1, k+2, \ldots, k+q\}$ by

$$f(v_i) = k + i - 1, \quad 1 \leq i \leq n$$

Then the induced edge labels are

$$f^e(u_l) = k + l - 1, \quad 1 \leq l \leq n - 1$$

The above defined function f provides k- contra harmonic mean labeling of the graph. Hence P_n is a k- contra harmonic mean graph.

Example 2.2

![500-harmonic mean labeling of P_{10}](image)

Theorem 2.3 The cycle graph C_n is a k-contra harmonic mean graph.

Proof: Let $u_1, u_2, \ldots, u_n, u_1$ be the given cycle of length n.

Define a function $f: V(G) \rightarrow \{k, k+1, k+2, \ldots, k+q\}$ by

$$f(u_l) = k + l - 1, \text{ for } 1 \leq l \leq n-1,$$

$$f(u_l) = k + q, \text{ for } l = n.$$

Then the induced edge labels are

$$f^e(u_l u_{l+1}) = k + l - 1, \text{ for } 1 \leq l \leq n-2$$

$$f^e(u_l u_{l+2}) = k + q - 1, \text{ for } l = n-1$$

$$f^e(u_1 u_2) = k + q - 2, \text{ for } l = n$$

The above defined function f provides k- contra harmonic mean labeling of the graph. Hence C_n is a k- contra harmonic mean graph.
Example 2.3

\[\text{50-contra harmonic mean labeling of } C_5\]

Theorem 2.4 The Triangular ladder \(T_{L_n} \) is \(k \)- contra harmonic mean graph for all \(k \) and \(n \geq 2 \).

Proof: Let \(V(T_{L_n}) = \{ u_i, v_i \mid 1 \leq i \leq n \} \) and

\[E(T_{L_n}) = \{ u_iu_{i+1}, v_iv_{i+2}, u_iv_{i+2} \mid 1 \leq i \leq n-1 \} \cup \{ u_iv_i \mid 1 \leq i \leq n \}. \]

First we label the vertices as follows

Define a function \(f : V(G) \to \{ k, k+1, k+2, \ldots, k+q \} \) by

\[f(u_i) = k + 4(t-3), \text{for } 1 \leq i \leq n \]
\[f(v_i) = k \]
\[f(v_i) = k + 4(t-5), \text{for } 2 \leq i \leq n \]

Then the induced edge labels are

\[f'(u_iv_{i+2}) = k + 4(t-1), \text{for } 1 \leq i \leq n-1 \]
\[f'(v_iv_{i+2}) = k + 4(t-3), \text{for } 1 \leq i \leq n-1 \]
\[f'(u_iv_i) = k + 4(t-4), \text{for } 1 \leq i \leq n \]
\[f'(u_iv_{i+2}) = k + 4(t-2), \text{for } 1 \leq i \leq n-1 \]

The above defined function \(f \) provides \(k \)- contra harmonic mean labeling of the graph.

Hence \(T_{L_n} \) is a \(k \)- contra harmonic mean graph.

Example: 2.4

\[700 \text{- Contra harmonic mean labeling of } T_{L_5}\]
Theorem 2.5A graph obtained by attaching a triangle at each pendent vertex of a comb is k- Contra harmonic mean graph for all k.

Proof: Let G be a graph obtained by attaching a triangle K_2 at each pendent vertex of $P_n \otimes K_1$. Let u_i,v_i be the vertices of the comb $P_n \otimes K_1$ in which v_i is joined with the vertex u_i of P_n. Let x_i,y_i,z_i be the vertices of t^{th} copy of K_3. Identify z_i with v_i. 1 ≤ t ≤ n.

The resultant graph is G whose edge set is

$E = \{ u_i u_{i+1} \mid 1 \leq i \leq n-1 \} \cup \{ u_i v_i, v_i x_i, v_i y_i, v_i z_i \mid 1 \leq i \leq n \}$.

Define a function $f : V(G) \rightarrow \{ k, k+1, k+2, \ldots, k + q \}$ by

\[
\begin{align*}
 f(u_i) &= k + 5i - 3, \text{ for } 1 \leq i \leq n \\
 f(v_i) &= k + 5i - 2, \text{ for } 1 \leq i \leq n \\
 f(x_i) &= k + 5i - 5, \text{ for } 1 \leq i \leq n \\
 f(y_i) &= k + 5i - 4, \text{ for } 1 \leq i \leq n \\
 f(z_i) &= k + 5i - 1, \text{ for } 1 \leq i \leq n - 1
\end{align*}
\]

Then the induced edge labels are

\[
\begin{align*}
 f^e(u_i u_{i+1}) &= k + 5i - 1, \text{ for } 1 \leq i \leq n - 1 \\
 f^e(u_i v_i) &= k + 5i - 2, \text{ for } 1 \leq i \leq n \\
 f^e(v_i x_i) &= k + 5i - 4, \text{ for } 1 \leq i \leq n \\
 f^e(v_i y_i) &= k + 5i - 3, \text{ for } 1 \leq i \leq n \\
 f^e(v_i z_i) &= k + 5i - 5, \text{ for } 1 \leq i \leq n
\end{align*}
\]

The above defined function f provides k-contra harmonic mean labeling of the graph. Hence the graph G is k- contra harmonic mean graph.

Example: 2.6

\[
\begin{align*}
400 - \text{Contra harmonic mean labeling of G}
\end{align*}
\]

Theorem 2.7 $P_n \otimes K_1$ is k- contra harmonic mean labelling
Proof: Let \(v_1, v_2, \ldots, v_n \) be the path \(P_n \). Let \(v_i \) be the vertices which is joined to the vertex \(v_i, 1 \leq t \leq n \) of the path \(P_n \). The resultant graph is \(P_n \odot K_2 \).

Let \(G = P_n \odot K_2 \). Define a function \(f : V(G) \to \{k, k+1, k+2, \ldots, k+q\} \) by

\[
\begin{align*}
 f(v_t) &= k + 2t - 2 & \text{for } 1 \leq t \leq n \\
 f(v_1) &= k+2t-1 & \text{for } 1 \leq t \leq n
\end{align*}
\]

Then the distinct edge labels are

\[
\begin{align*}
 f^{e}(v_1v_{t+1}) &= k + 2t - 1 & \text{for } 1 \leq t \leq n - 1 \\
 f^{e}(v_tv_{t+2}) &= k + 2t - 2 & \text{for } 1 \leq t \leq n
\end{align*}
\]

The above defined function \(f \) provides \(k \)-contra harmonic mean labelling of the graph. Hence \(P_n \odot K_2 \) is \(k \)-contra harmonic mean labelling.

Example 2.8

![Diagram of 50-contra harmonic mean labelling of \(P_n \odot K_2 \).](image)

Theorem 2.9A Triangular snake \(T_n (n \geq 2) \) is \(k \)-contra harmonic mean graph \(\forall k \geq 2 \).

Proof: Let \(V(T_n) = \{u_t | 1 \leq t \leq n\} \cup \{v_t | 1 \leq t \leq n - 1\} \) and

\[E(T_n) = \{u_t u_{t+2}, v_t v_{t+2} \mid 1 \leq t \leq n - 1\}. \]

First we label the vertices as follows.

Define a function \(f : V(T_n) \to \{k, k+1, k+2, \ldots, k+q\} \) by

\[
\begin{align*}
 f(u_t) &= k + 3t - 3 & \text{for } 1 \leq t \leq n \\
 f(v_t) &= k + 1 \\
 f(v_1) &= k + 3t - 2 & \text{for } 2 \leq t \leq n - 1
\end{align*}
\]

Then the induced edge labels are

\[
\begin{align*}
 f^{e}(u_tu_{t+2}) &= k + 1 \\
 f^{e}(u_tu_{t+2}) &= k + 3t + 1 & \text{for } 2 \leq t \leq n - 1 \\
 f^{e}(v_tv_{t+2}) &= k + 3t - 3 & \text{for } 1 \leq t \leq n - 1 \\
 f^{e}(u_1v_1) &= k + 3t - 1 & \text{for } 2 \leq t \leq n - 1 \\
 f^{e}(u_2v_2) &= k + 2
\end{align*}
\]
The above defined function f provides k-contra harmonic mean labeling of the graph. Hence T_n is a k– Contra harmonic mean graph.

Example 2.10

![100– Contra harmonic mean graph of T_6]

Theorem 2.11 A (m,n) kite graph G is a k-contra harmonic mean graph.

Proof: Let $u_1, u_2, ..., u_m$ be the given cycle of length m and $v_1, v_2, ..., v_n$ be the given path of length n.

Define a function $f : V(G) \rightarrow \{k, k+1, k+2, ..., k+q\}$ by

\[
\begin{align*}
 f(u_i) &= k + i - 1, \text{ for } 1 \leq i \leq m, \\
 f(v_i) &= k + i + 5, \text{ for } 1 \leq i \leq n.
\end{align*}
\]

Then the induced edge labels are

\[
\begin{align*}
 f^*(u_{i+1}) &= k + i - 1, \text{ for } 1 \leq i \leq n - 2, \\
 f^*(u_mu_m^{-1}) &= k + m - 1, \\
 f^*(u_1u_n) &= k + 3.
\end{align*}
\]

and the edge labels of the path are $\{k + m + 1, k + m + 2, ..., k + m + n - 1\}$. The above defined function f provides k-contra harmonic mean labeling of the graph.

Hence the (m,n) kite graph is a k-contra harmonic mean graph.

Example 2.12

![50 -contra harmonic mean labeling of (5,6) kite graph]
Theorem 2.13 Let P_n be the path and G be the graph obtained from P_n by attaching G_3 in both the end edges of P_n. Then G is a k-contra harmonic mean graph.

Proof: Let P_n be the path $v_1v_2, v_2v_3, \ldots, v_{n-1}v_n$. Define a function $f : V(G) \rightarrow \{k, k + 1, k + 2, \ldots, k + q\}$ by

\[
\begin{align*}
 f(u_i) &= k + l, \text{ for } 1 \leq i \leq u_i, \\
 f(v_i) &= k; f(v_2) = k + q.
\end{align*}
\]

Then the induced edge labels are

\[
\begin{align*}
 f^e(u_1u_2) &= k + l + 1, \text{ for } 1 \leq i \leq n - 1 \\
 f^e(u_2v_2) &= k \\
 f^e(u_2v_3) &= k + 1 \\
 f^e(u_{n-2}v_2) &= k + n + 1 \\
 f^e(u_nv_2) &= k + n + 2
\end{align*}
\]

The above defined function f provides k-contra harmonic mean labelling of the graph. Hence G is a k-contra harmonic mean graph.

Example 2.14: A k-contra harmonic mean labelling of G obtained from P_n is

![200-contra harmonic mean labelling of G](image)

3. **CONCLUSION**

The Study of labelled graph is important due to its diversified applications. It is very interesting to investigate graphs which admit k-Contra Harmonic Mean Labelling. In this paper, we proved that Path, Triangular Ladder TL_n, a graph obtained by attaching a triangle at each pendant vertex of a comb, Comb, Triangular Snake, (m,n)-Kite graph, the graph obtained from P_n by attaching C_3 in both the end edges of P_n, are k-Contra Harmonic Mean Graphs. The derived results are demonstrated by means of sufficient illustrations which provide better understanding. It is possible to investigate similar results for several other graphs.
REFERENCES