

International Journal of Scientific Research and Reviews

Integer Cordial Labeling of Triangular Snake Graph

Shah Pratik^{1*} and Parmar Dharamvirsinh²

¹Department of Mathematics, C. U. Shah University, Wadhwan, Gujarat, India.
²Department of Mathematics, C. U. Shah University, Wadhwan, Gujarat, India. Email: ¹pvshah2286@gmail.com, ²dharamvir_21@yahoo.co.in

ABSTRACT

A graph G = (V, E) with |V| = p is called integer cordial labeled graph if it has an injective map $f : V \rightarrow \left[-\frac{p}{2}, ..., \frac{p}{2}\right]^*$ or $\left[-\left\lfloor\frac{p}{2}\right\rfloor, ..., \left\lfloor\frac{p}{2}\right\rfloor\right]$ as p is even or odd, which includes an edge labeling $f^* : E \rightarrow \{0,1\}$ defined by $f^*(e = uv) = 1$ if $f(u) + f(v) \ge 0$ and 0 otherwise such that $|e_f(0) - e_f(1)| \le 1$. In this paper we discuss Integer cordial labeling of triangular snake graph T_n , double triangular snake graph DT_n , triple triangular snake graph TT_n and alternate triangular snake graph AT_n .

KEYWORDS: Integer cordial labeling, Triangular Snake graphs

*Corresponding author

Mr. Pratik Shah

Assistant Professor, Department of Mathematics,

B.V.Shah (Vadi Vihar) Science college,

Faculty of Science, C.U.Shah University,

Wadhwan - 363030

Surendranagar, Gujarat, India.

Email: pvshah2286@gmail.com, Mobile No - 9033777907

INTRODUCTION

In this paper, we consider finite, connected and undirected graph. A graph G = (V(G), E(G)) having set of vertices V(G) and set of edges E(G). For the standard notation, we refer Gross and Yellen.² The concept of cordial labeling was introduced by I. Cahit³ in 1987.

Definition-1.1: If the vertices or edges of graph are assigned values or label to certain conditions is known as graph labeling.

Definition-1.2: A labeling of a graph G is said to be cordial labeling if $|v_f(0) - v_f(1)| \le 1$ & $|e_f(0) - e_f(1)| \le 1$, where $v_f(i)$ and $e_f(i)$ is the numbers of vertices and edges of graph G having labeled *i* respectively for i = 0, 1. A graph which admits cordial labeling is called cordial graph.

Different types of cordial labeling are introduced and explored by many researchers. For detailed survey on graph labeling we refer to a dynamic survey on graph labeling by Gallian.⁴

Definition-1.3: A simple connected graph G = (V, E) with |V| = p. Let $f : V \to \left[-\frac{p}{2}, ..., \frac{p}{2}\right]^*$ or $\left[|p|| |p||\right]$

 $\begin{bmatrix} -\left\lfloor \frac{p}{2} \right\rfloor, \dots, \left\lfloor \frac{p}{2} \right\rfloor \end{bmatrix} \text{ as } p \text{ is even or odd be an injective map, which includes an edge labeling}$ $f^*: E \to \{0,1\} \text{ defined by } f^* (e = uv) = 1 \text{ if } f(u) + f(v) \ge 0 \text{ and } 0 \text{ otherwise then } f \text{ is said to be}$ integer cordial if $|e_f(0) - e_f(1)| \le 1$. Where $e_f(i)$ is the numbers of edges of graph *G* having label *i* for i = 0, 1. A graph is called integer cordial graph if it admits an integer cordial labeling. Where $\begin{bmatrix} -t, \dots, t \end{bmatrix} = \{x | x \text{ is an integer } \& |x| \le t\} \text{ and } \begin{bmatrix} -t, \dots, t \end{bmatrix}^* = \begin{bmatrix} -t, \dots, t \end{bmatrix} - \{0\}.$

> T. Nicholas and P. Maya⁶ have proved following result:

- (i) Complete graph K_n is not integer cordial graph, n > 3.
- (ii) Star graph $K_{1,n}$ is integer cordial.
- (iii) Helm graph H_n is integer cordial.
- (iv) Closed Helm graph CH_n is integer cordial.
- (v) Complete bipartite graph $K_{n,n}$ is integer cordial iff *n* is even.
- (vi) Graph $K_{n,n} \setminus M$ is an integer cordial, where M is a perfect matching.

Definition-1.4: A Triangular snake graph T_n is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and

 u_{i+1} to a new vertex v_i for $1 \le i \le n$, that is every edge of a path is replaced by a triangle.

Definition-1.5: Double Triangular Snake graph DT_n consists of two Triangular snakes that have a common path.

Definition-1.6: Triple Triangular Snake graph TT_n consists of three Triangular snakes that have a common path.

Definition-1.7: An Alternate Triangular Snake graph AT_n is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} alternatively (i = 1, 3, 5,) to a new vertex v_i . That is every alternate edge of a path is replaced by C_3 .

MAIN RESULTS

Theorem-2.1: The Triangular snake graph T_n is integer cordial graph, $n \ge 2$.

Proof: Let $u_1, u_2, ..., u_n$ be the *n* vertices and joining u_i and u_{i+1} to a new vertex v_i for $1 \le i \le n-1$. Hence total no. of vertices in $T_n = p = 2n-1$ and number of edges in $T_n = q = 3(n-1)$.

There are two cases for the value of *n*.

Case-1: n is even

When n is even then p is odd.

We define
$$f: V \to \left[-\left\lfloor \frac{p}{2} \right\rfloor, \dots, \left\lfloor \frac{p}{2} \right\rfloor \right]$$
 as follows:

$$f(u_i) = \begin{cases} i - \frac{n+2}{2} ; & 1 \le i \le \frac{n}{2} \\ i - \frac{n}{2} & ; & \frac{n}{2} < i \le n \end{cases}$$
$$f(v_i) = \begin{cases} i - n ; & 1 \le i < \frac{n}{2} \\ 0 & ; & i = \frac{n}{2} \\ i & ; & \frac{n}{2} < i \le n - 1 \end{cases}$$

Case-2: n is odd

When n is odd then p is odd.

We define
$$f: V \rightarrow \left[-\left\lfloor \frac{p}{2} \right\rfloor, ..., \left\lfloor \frac{p}{2} \right\rfloor \right]$$
 as follows:
 $f(u_i) = i - \frac{n+1}{2}; \quad 1 \le i \le n$
 $f(v_i) = \begin{cases} i - n; & 1 \le i \le \frac{n-1}{2} \\ i & ; & \frac{n-1}{2} < i \le n-1 \end{cases}$

IJSRR, 8(1) Jan. – Mar., 2019

Table – 1 "edge condition for T_n "				
Case No.	Value of <i>n</i>	Value of <i>p</i>	Edge condition	
1	<i>n</i> is even	p is odd	$e_f(0) = \left\lfloor \frac{3(n-1)}{2} \right\rfloor$ and $e_f(1) = \left\lceil \frac{3(n-1)}{2} \right\rceil$	
2	<i>n</i> is odd	p is odd	$e_f(0) = \frac{3(n-1)}{2}$ and $e_f(1) = \frac{3(n-1)}{2}$	

Hence Triangular snake graph T_n is integer cordial.

Example-2.2: An integer cordial labeling of T_7 is shown in Figure-1.

Figure – 1 "triangular snake graph with 7 vertices (T_7) "

Theorem-2.3: The Double Triangular snake graph DT_n is integer cordial graph, $n \ge 2$.

Proof: Let $u_1, u_2, ..., u_n$ be the *n* vertices and joining u_i and u_{i+1} to a new vertex v_i and v'_i for $1 \le i \le n-1$. Total no. of vertices in $DT_n = p = 3n-2$ and number of edges in $DT_n = q = 5(n-1)$. Case-1: *n* is even

When n is even then p is also even.

We define
$$f: V \rightarrow \left[-\frac{p}{2}, ..., \frac{p}{2}\right]^*$$
 as follows:

$$f(u_i) = \begin{cases} i - \frac{3n}{2} ; & 1 \le i \le \frac{n}{2} \\ i + \frac{n-2}{2} ; & \frac{n}{2} < i \le n \end{cases}$$

$$f(v_i) = i; & 1 \le i \le n-1$$

$$f(v_i') = -i; & 1 \le i \le n-1$$
Case 2: *n* is odd

Case-2: n is odd

When n is odd then p is also an odd.

We define
$$f: V \rightarrow \left[-\left\lfloor \frac{p}{2} \right\rfloor, \dots, \left\lfloor \frac{p}{2} \right\rfloor \right]$$
 as follows:

$$f(u_i) = \begin{cases} i - \left(\frac{3n-1}{2}\right); & 1 \le i < \frac{n+1}{2} \\ 0 & ; & i = \frac{n+1}{2} \\ i + \frac{n-3}{2} & ; & \frac{n+1}{2} < i \le n \end{cases}$$

$$f(v_i) = i; & 1 \le i \le n-1$$

$$f(v_i') = -i; & 1 \le i \le n-1$$

Table – 2 "edge condition for DT_n "				
Case No.	Value of <i>n</i>	Value of <i>p</i>	Edge condition	
1	<i>n</i> is even	p is even	$e_f(0) = \left\lfloor \frac{5(n-1)}{2} \right\rfloor$ and $e_f(1) = \left\lceil \frac{5(n-1)}{2} \right\rceil$	
2	n is odd	p is odd	$e_{f}(0) = \frac{5(n-1)}{2}$ and $e_{f}(1) = \frac{5(n-1)}{2}$	

Hence, Double Triangular snake graph DT_n is integer cordial.

Example-2.4: An integer cordial labeling of DT_6 is shown in Figure-2.

Figure – 2 "double triangular snake graph with 6 vertices (DT_6) "

Theorem-2.5: The Triple Triangular snake graph TT_n is integer cordial graph, $n \ge 2$.

Proof: Let $u_1, u_2, ..., u_n$ be the *n* vertices and joining u_i and u_{i+1} to a new vertex v_i, v_i' and v_i'' for $1 \le i \le n-1$. Total no. of vertices in $TT_n = p = 4n-3$ and number of edges in $TT_n = q = 7(n-1)$. Case-1: *n* is even.

When n is even then p is odd.

We define $f: V \rightarrow \left[-\left\lfloor \frac{p}{2} \right\rfloor, \dots, \left\lfloor \frac{p}{2} \right\rfloor \right]$ as follows: $f(u_i) = \begin{cases} i - \frac{3n}{2} ; & 1 \le i \le \frac{n}{2} \\ i + \frac{n-2}{2} ; & \frac{n}{2} < i \le n \end{cases}$ $f(v_i) = i ; & 1 \le i \le n-1$ $f(v_i') = \begin{cases} i - (2n-1) ; & 1 \le i < \frac{n}{2} \\ 0 & ; & i = \frac{n}{2} \\ i + (n-1) ; & \frac{n}{2} < i \le n-1 \end{cases}$ $f(v_i'') = -i; & 1 \le i \le n-1$

Case-2: n is odd

When n is odd then p is also an odd.

We define $f: V \rightarrow \left[-\left\lfloor \frac{p}{2} \right\rfloor, \dots, \left\lfloor \frac{p}{2} \right\rfloor \right]$ as follows: $f\left(u_{i}\right) = \begin{cases} i - \left(\frac{3n-1}{2}\right); & 1 \le i < \frac{n+1}{2} \\ 0 & ; & i = \frac{n+1}{2} \\ i + \frac{n-3}{2} & ; & \frac{n+1}{2} < i \le n \end{cases}$ $f\left(v_{i}\right) = i; & 1 \le i \le n-1$ $f\left(v_{i}'\right) = \begin{cases} i - (2n-1); & 1 \le i \le \frac{n-1}{2} \\ i + (n-1); & \frac{n-1}{2} < i \le n-1 \end{cases}$

$$f\left(v_{i}''\right) = -i; \qquad 1 \le i \le n-1$$

Table –	3	"edge	condition	for	TT.,"
I abic –	•	cuge	contaition	101	I I n

Table – 5 redge condition for TT_n				
Case No.	Value of <i>n</i>	Value of <i>p</i>	Edge condition	
1	<i>n</i> is even	p is odd	$e_f(0) = \left\lfloor \frac{7(n-1)}{2} \right\rfloor$ and $e_f(1) = \left\lceil \frac{7(n-1)}{2} \right\rceil$	
2	n is odd	p is odd	$e_f(0) = \frac{7(n-1)}{2}$ and $e_f(1) = \frac{7(n-1)}{2}$	

Hence, Triple Triangular snake graph TT_n is integer cordial.

Example-2.6: An integer cordial labeling of TT_6 is shown in Figure-3.

Figure – 3 "triple triangular snake graph with 6 vertices (TT_6) "

Theorem-2.7: The Alternate Triangular snake graph AT_n is integer cordial graph, $n \ge 2$.

Proof: Let $u_1, u_2, ..., u_n$ be the *n* vertices and joining u_i and u_{i+1} alternatively (i = 1, 3, 5,) to a new vertex v_i for $1 \le i \le n-1$.

There are different four cases related to the value of *n* and *p*.

Case-1: If n is even and p is odd.

We define
$$f: V \rightarrow \left[-\left\lfloor \frac{p}{2} \right\rfloor, \dots, \left\lfloor \frac{p}{2} \right\rfloor \right]$$
 as follows:

$$f\left(u_{i}\right) = \begin{cases} i - \frac{n+2}{2} ; & 1 \le i \le \frac{n}{2} \\ i - \frac{n}{2} ; & \frac{n}{2} < i \le n \end{cases}$$

$$f\left(v_{i}\right) = \begin{cases} i - \frac{3n+2}{4} ; & 1 \le i < \frac{n+2}{4} \\ 0 & ; & i = \frac{n+2}{4} \\ i + \frac{n-2}{4} ; & \frac{n+2}{4} < i \le \frac{n}{2} \end{cases}$$

Case-2: If *n* and *p* are even.

We define $f: V \rightarrow \left[-\frac{p}{2}, ..., \frac{p}{2}\right]^*$ as follows: $f\left(u_i\right) = \begin{cases} i - \frac{n+2}{2}; & 1 \le i \le \frac{n}{2} \\ i - \frac{n}{2}; & \frac{n}{2} < i \le n \end{cases}$ $f\left(v_i\right) = \begin{cases} i - \frac{3n+4}{4}; & 1 \le i \le \frac{n}{4} \\ i + \frac{n}{4}; & \frac{n}{4} < i \le \frac{n}{2} \end{cases}$

Case-3: If *p* and *n* both are odd.

We define $f: V \rightarrow \left[-\left\lfloor \frac{p}{2} \right\rfloor, \dots, \left\lfloor \frac{p}{2} \right\rfloor \right]$ as follows: $f(u_i) = i - \frac{n+1}{2}; \quad 1 \le i \le n$ $f(v_i) = \begin{cases} i - \frac{3n+1}{4}; & 1 \le i \le \frac{n-1}{4} \\ i + \frac{n-1}{4}; & \frac{n-1}{4} < i \le \frac{n-1}{2} \end{cases}$

Case-4: If p is even and n is odd.

We define $f: V \to \left[-\frac{p}{2}, ..., \frac{p}{2}\right]^*$ as follows: $f(u_i) = \begin{cases} i - \frac{n+1}{2}; & 1 \le i \le \frac{n-1}{2} \\ i - \frac{n-1}{2}; & \frac{n-1}{2} < i \le n \end{cases}$ $f(v_i) = \begin{cases} i - \frac{3(n+1)}{4}; & 1 \le i \le \frac{n+1}{4} \\ i + \frac{n+1}{4}; & \frac{n+1}{4} < i \le n \end{cases}$

Table – 4 "edge condition for AT_n "

Case No.	Value of <i>n</i>	Value of <i>p</i>	Edge condition
1	<i>n</i> is even	p is odd	$e_f(0) = n - 1$ and $e_f(1) = n$
2	<i>n</i> is even	p is even	$e_f(0) = n - 1$ and $e_f(1) = n$
3	<i>n</i> is odd	p is odd	$e_{f}(0) = n - 1$ and $e_{f}(1) = n - 1$
4	<i>n</i> is odd	p is even	$e_{f}(0) = n - 1$ and $e_{f}(1) = n - 1$

Hence, Alternate Triangular snake graph AT_n is integer cordial.

Example-2.8: An integer cordial labeling of AT_6 is shown in Figure-4.

Figure - 4 "alternate triangular snake graph with 6 vertices (AT_6) "

CONCLUSION

In this paper we have proved that triangular snake graph, double triangular snake graph, triple triangular snake graph and alternate triangular snake graph admits integer cordial labeling.

REFERENCES:

- Parmar D, Joshi J. H_K Cordial Labeling of Triangular Snake Graph. Journal of Applied Science and Computations 2019; 6(3):2118-23.
- 2. Gross J, Yellen J. "Graph Theory and its applications", CRC Press.
- 3. Cahit I. Cordial graphs: A weaker version of graceful and harmonious graphs. Ars Combinatoria 1987; 23:201-08.
- 4. Gallian JA, "Graph Labeling" [online]. 2018 [cited 2018 December 21]. Available from: URL: https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6
- 5. Parmar N, Parmar D. Product Cordial Labeling in Context of some Graph Operations on Cycle. Mathematics Today 2018; 34-A:218-27.
- 6. Nicholas T, Maya P. Some results on integer cordial graph. Journal of Progressive Research in Mathematics 2016; 8:1183-94.
- 7. Vaidya SK, Shah NH. Cordial labeling of snakes. International Journal of Mathematics and its applications 2014; 2(3):17-27.