I rtemational J amel of Sietïfic Reemonand Reiens

Integer Cordial Labeling of Triangular Snake Graph

Shah Pratik ${ }^{1 *}$ and Parmar Dharamvirsinh ${ }^{2}$
${ }^{1}$ Department of Mathematics, C. U. Shah University, Wadhwan, Gujarat, India.
${ }^{2}$ Department of Mathematics, C. U. Shah University, Wadhwan, Gujarat, India. Email: ${ }^{1}$ pvshah2286@gmail.com, ${ }^{2}$ dharamvir_21@yahoo.co.in

Abstract

A graph $G=(V, E)$ with $|V|=p$ is called integer cordial labeled graph if it has an injective map $f: V \rightarrow\left[-\frac{p}{2}, \ldots, \frac{p}{2}\right]^{*}$ or $\left[-\left\lfloor\frac{p}{2}\right\rfloor, \ldots .,\left\lfloor\frac{p}{2}\right\rfloor\right]$ as p is even or odd, which includes an edge labeling $f^{*}: E \rightarrow\{0,1\}$ defined \quad by $f^{*}(e=u v)=1$ if $\quad f(u)+f(v) \geq 0$ and $\quad 0 \quad$ otherwise such that $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. In this paper we discuss Integer cordial labeling of triangular snake graph T_{n}, double triangular snake graph $D T_{n}$, triple triangular snake graph $T T_{n}$ and alternate triangular snake graph $A T_{n}$.

KEYWORDS: Integer cordial labeling, Triangular Snake graphs

*Corresponding author

Mr. Pratik Shah

Assistant Professor, Department of Mathematics,
B.V.Shah (Vadi Vihar) Science college,

Faculty of Science, C.U.Shah University,
Wadhwan - 363030
Surendranagar, Gujarat, India.
Email: pvshah2286@gmail.com, Mobile No - 9033777907

INTRODUCTION

In this paper, we consider finite, connected and undirected graph. A graph $G=(V(G), E(G))$ having set of vertices $V(G)$ and set of edges $E(G)$. For the standard notation, we refer Gross and Yellen. ${ }^{2}$ The concept of cordial labeling was introduced by I. Cahit ${ }^{3}$ in 1987.

Definition-1.1: If the vertices or edges of graph are assigned values or label to certain conditions is known as graph labeling.

Definition-1.2: A labeling of a graph G is said to be cordial labeling if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1 \&$ $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$, where $v_{f}(i)$ and $e_{f}(i)$ is the numbers of vertices and edges of graph G having labeled i respectively for $i=0,1$. A graph which admits cordial labeling is called cordial graph.

Different types of cordial labeling are introduced and explored by many researchers. For detailed survey on graph labeling we refer to a dynamic survey on graph labeling by Gallian. ${ }^{4}$

Definition-1.3: A simple connected graph $G=(V, E)$ with $|V|=p$. Let $f: V \rightarrow\left[-\frac{p}{2}, \ldots ., \frac{p}{2}\right]^{*}$ or $\left[-\left\lfloor\frac{p}{2}\right\rfloor, \ldots .,\left\lfloor\frac{p}{2}\right\rfloor\right]$ as p is even or odd be an injective map, which includes an edge labeling $f^{*}: E \rightarrow\{0,1\}$ defined by $f^{*}(e=u v)=1$ if $f(u)+f(v) \geq 0$ and 0 otherwise then f is said to be integer cordial if $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. Where $e_{f}(i)$ is the numbers of edges of graph G having label i for $i=0,1$. A graph is called integer cordial graph if it admits an integer cordial labeling. Where $[-t, \ldots, t]=\{x \mid x$ is an integer $\&|x| \leq t\}$ and $[-t, \ldots, t]^{*}=[-t, \ldots, t]-\{0\}$.
$>$ T. Nicholas and P. Maya ${ }^{6}$ have proved following result:
(i) Complete graph K_{n} is not integer cordial graph, $n>3$.
(ii) Star graph $K_{l, n}$ is integer cordial.
(iii) Helm graph H_{n} is integer cordial.
(iv) Closed Helm graph CH_{n} is integer cordial.
(v) Complete bipartite graph $K_{n, n}$ is integer cordial iff n is even.
(vi) Graph $K_{n, n} \backslash M$ is an integer cordial, where M is a perfect matching.

Definition-1.4: A Triangular snake graph T_{n} is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} to a new vertex v_{i} for $1 \leq i \leq n$, that is every edge of a path is replaced by a triangle.

Definition-1.5: Double Triangular Snake graph $D T_{n}$ consists of two Triangular snakes that have a common path.

Definition-1.6: Triple Triangular Snake graph $T T_{n}$ consists of three Triangular snakes that have a common path.

Definition-1.7: An Alternate Triangular Snake graph $A T_{n}$ is obtained from a path $u_{1}, u_{2}, \ldots ., u_{n}$ by joining u_{i} and u_{i+1} alternatively $(i=1,3,5, \ldots .$.$) to a new vertex v_{i}$. That is every alternate edge of a path is replaced by C_{3}.

MAIN RESULTS

Theorem-2.1: The Triangular snake graph T_{n} is integer cordial graph, $n \geq 2$.
Proof: Let $u_{1}, u_{2}, \ldots ., u_{n}$ be the n vertices and joining u_{i} and u_{i+1} to a new vertex v_{i} for $1 \leq i \leq n-1$.Hence total no. of vertices in $T_{n}=p=2 n-1$ and number of edges in $T_{n}=q=3(n-1)$.

There are two cases for the value of n.
Case-1: n is even
When n is even then p is odd.
We define $f: V \rightarrow\left[-\left\lfloor\frac{p}{2}\right\rfloor, \ldots .,\left\lfloor\frac{p}{2}\right\rfloor\right]$ as follows:
$f\left(u_{i}\right)= \begin{cases}i-\frac{n+2}{2} ; & 1 \leq i \leq \frac{n}{2} \\ i-\frac{n}{2} \quad ; & \frac{n}{2}<i \leq n\end{cases}$
$f\left(v_{i}\right)= \begin{cases}i-n ; & 1 \leq i<\frac{n}{2} \\ 0 ; & i=\frac{n}{2} \\ i \quad ; & \frac{n}{2}<i \leq n-1\end{cases}$
Case-2: n is odd
When n is odd then p is odd.
We define $f: V \rightarrow\left[-\left\lfloor\frac{p}{2}\right\rfloor, \ldots .,\left\lfloor\frac{p}{2}\right\rfloor\right]$ as follows:
$f\left(u_{i}\right)=i-\frac{n+1}{2} ; \quad 1 \leq i \leq n$
$f\left(v_{i}\right)= \begin{cases}i-n & ; \quad 1 \leq i \leq \frac{n-1}{2} \\ i & ; \\ \frac{n-1}{2}<i \leq n-1\end{cases}$

Table - 1 "edge condition for T_{n} "

Case No.	Value of \boldsymbol{n}	Value of \boldsymbol{p}	Edge condition
1	n is even	p is odd	$e_{f}(0)=\left\lfloor\frac{3(n-1)}{2}\right\rfloor$ and $e_{f}(1)=\left\lceil\frac{3(n-1)}{2}\right\rceil$
2	n is odd	p is odd	$e_{f}(0)=\frac{3(n-1)}{2}$ and $e_{f}(1)=\frac{3(n-1)}{2}$

Thus, in each case we get $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence Triangular snake graph T_{n} is integer cordial.
Example-2.2: An integer cordial labeling of T_{7} is shown in Figure-1.

Figure - 1 "triangular snake graph with 7 vertices (T_{7})"
Theorem-2.3: The Double Triangular snake graph $D T_{n}$ is integer cordial graph, $n \geq 2$.
Proof: Let $u_{1}, u_{2}, \ldots, u_{n}$ be the n vertices and joining u_{i} and u_{i+1} to a new vertex v_{i} and v_{i}^{\prime} for $1 \leq i \leq n-1$. Total no. of vertices in $D T_{n}=p=3 n-2$ and number of edges in $D T_{n}=q=5(n-1)$.

Case-1: n is even
When n is even then p is also even.
We define $f: V \rightarrow\left[-\frac{p}{2}, \ldots, \frac{p}{2}\right]^{*}$ as follows:
$f\left(u_{i}\right)= \begin{cases}i-\frac{3 n}{2} ; & 1 \leq i \leq \frac{n}{2} \\ i+\frac{n-2}{2} ; & \frac{n}{2}<i \leq n\end{cases}$
$f\left(v_{i}\right)=i ; \quad 1 \leq i \leq n-1$
$f\left(v_{i}^{\prime}\right)=-i ; \quad 1 \leq i \leq n-1$
Case-2: n is odd
When n is odd then p is also an odd.
We define $f: V \rightarrow\left[-\left\lfloor\frac{p}{2}\right\rfloor, \ldots .\left\lfloor\frac{p}{2}\right\rfloor\right\rfloor$ as follows:
$f\left(u_{i}\right)= \begin{cases}i-\left(\frac{3 n-1}{2}\right) ; & 1 \leq i<\frac{n+1}{2} \\ 0 & ; \\ i=\frac{n+1}{2} \\ i+\frac{n-3}{2} ; & \frac{n+1}{2}<i \leq n\end{cases}$
$f\left(v_{i}\right)=i ; \quad 1 \leq i \leq n-1$
$f\left(v_{i}^{\prime}\right)=-i ; \quad 1 \leq i \leq n-1$
Table - 2 "edge condition for $D T_{n}$ "

Case No.	Value of \boldsymbol{n}	Value of \boldsymbol{p}	Edge condition
1	n is even	p is even	$e_{f}(0)=\left\lfloor\frac{5(n-1)}{2}\right\rfloor$ and $e_{f}(1)=\left\lceil\frac{5(n-1)}{2}\right\rceil$
2	n is odd	p is odd	$e_{f}(0)=\frac{5(n-1)}{2}$ and $e_{f}(1)=\frac{5(n-1)}{2}$

Thus, in each case we get $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence, Double Triangular snake graph $D T_{n}$ is integer cordial.
Example-2.4: An integer cordial labeling of $D T_{6}$ is shown in Figure-2.

Figure - 2 "double triangular snake graph with 6 vertices $\left(D T_{6}\right)$ "
Theorem-2.5: The Triple Triangular snake graph $T T_{n}$ is integer cordial graph, $n \geq 2$.
Proof: Let $u_{1}, u_{2}, \ldots, u_{n}$ be the n vertices and joining u_{i} and u_{i+1} to a new vertex v_{i}, v_{i}^{\prime} and $v_{i}^{\prime \prime}$ for $1 \leq i \leq n-1$. Total no. of vertices in $T T_{n}=p=4 n-3$ and number of edges in $T T_{n}=q=7(n-1)$.

Case-1: n is even.
When n is even then p is odd.

We define $f: V \rightarrow\left[-\left\lfloor\frac{p}{2}\right\rfloor, \ldots .\left\lfloor\frac{p}{2}\right\rfloor\right\rfloor$ as follows:
$f\left(u_{i}\right)= \begin{cases}i-\frac{3 n}{2} ; & 1 \leq i \leq \frac{n}{2} \\ i+\frac{n-2}{2} ; & \frac{n}{2}<i \leq n\end{cases}$
$f\left(v_{i}\right)=i ; \quad 1 \leq i \leq n-1$
$f\left(v_{i}^{\prime}\right)= \begin{cases}i-(2 n-1) ; & 1 \leq i<\frac{n}{2} \\ 0 & ; \quad i=\frac{n}{2} \\ i+(n-1) & ; \quad \frac{n}{2}<i \leq n-1\end{cases}$
$f\left(v_{i}^{\prime \prime}\right)=-i ; \quad 1 \leq i \leq n-1$
Case-2: n is odd
When n is odd then p is also an odd.
We define $f: V \rightarrow\left[-\left\lfloor\frac{p}{2}\right\rfloor, \ldots .,\left\lfloor\frac{p}{2}\right\rfloor\right\rfloor$ as follows:
$f\left(u_{i}\right)= \begin{cases}i-\left(\frac{3 n-1}{2}\right) ; & 1 \leq i<\frac{n+1}{2} \\ 0 & ; \quad i=\frac{n+1}{2} \\ i+\frac{n-3}{2} ; & \frac{n+1}{2}<i \leq n\end{cases}$
$f\left(v_{i}\right)=i ; \quad 1 \leq i \leq n-1$
$f\left(v_{i}^{\prime}\right)= \begin{cases}i-(2 n-1) ; & 1 \leq i \leq \frac{n-1}{2} \\ i+(n-1) ; & \frac{n-1}{2}<i \leq n-1\end{cases}$
$f\left(v_{i}^{\prime \prime}\right)=-i ; \quad 1 \leq i \leq n-1$
Table - 3 "edge condition for $T T_{n}$ "

Case No.	Value of \boldsymbol{n}	Value of \boldsymbol{p}	Edge condition
1	n is even	p is odd	$e_{f}(0)=\left\lfloor\frac{7(n-1)}{2}\right\rfloor$ and $e_{f}(1)=\left\lceil\frac{7(n-1)}{2}\right\rceil$
2	n is odd	p is odd	$e_{f}(0)=\frac{7(n-1)}{2}$ and $e_{f}(1)=\frac{7(n-1)}{2}$

Thus, in each case we get $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence, Triple Triangular snake graph $T T_{n}$ is integer cordial.
Example-2.6: An integer cordial labeling of $T T_{6}$ is shown in Figure-3.

Figure - 3 "triple triangular snake graph with 6 vertices $\left(T T_{6}\right)$ "
Theorem-2.7: The Alternate Triangular snake graph $A T_{n}$ is integer cordial graph, $n \geq 2$.
Proof: Let $u_{1}, u_{2}, \ldots ., u_{n}$ be the n vertices and joining u_{i} and u_{i+1} alternatively $(i=1,3,5, \ldots .$.$) to a new$ vertex v_{i} for $1 \leq i \leq n-1$.

There are different four cases related to the value of n and p.
Case-1: If n is even and p is odd.
We define $f: V \rightarrow\left[-\left\lfloor\frac{p}{2}\right\rfloor, \ldots .,\left\lfloor\frac{p}{2}\right\rfloor\right\rfloor$ as follows:
$f\left(u_{i}\right)= \begin{cases}i-\frac{n+2}{2} ; & 1 \leq i \leq \frac{n}{2} \\ i-\frac{n}{2} ; & \frac{n}{2}<i \leq n\end{cases}$
$f\left(v_{i}\right)= \begin{cases}i-\frac{3 n+2}{4} ; & 1 \leq i<\frac{n+2}{4} \\ 0 \quad ; & i=\frac{n+2}{4} \\ i+\frac{n-2}{4} ; & \frac{n+2}{4}<i \leq \frac{n}{2}\end{cases}$
Case-2: If n and p are even.

We define $f: V \rightarrow\left[-\frac{p}{2}, \ldots, \frac{p}{2}\right]^{*}$ as follows:
$f\left(u_{i}\right)= \begin{cases}i-\frac{n+2}{2} ; & 1 \leq i \leq \frac{n}{2} \\ i-\frac{n}{2} ; & \frac{n}{2}<i \leq n\end{cases}$
$f\left(v_{i}\right)= \begin{cases}i-\frac{3 n+4}{4} ; & 1 \leq i \leq \frac{n}{4} \\ i+\frac{n}{4} ; & \frac{n}{4}<i \leq \frac{n}{2}\end{cases}$
Case-3: If p and n both are odd.
We define $f: V \rightarrow\left[-\left\lfloor\frac{p}{2}\right\rfloor, \ldots .,\left\lfloor\frac{p}{2}\right\rfloor\right]$ as follows:
$f\left(u_{i}\right)=i-\frac{n+1}{2} ; \quad 1 \leq i \leq n$
$f\left(v_{i}\right)= \begin{cases}i-\frac{3 n+1}{4} ; & 1 \leq i \leq \frac{n-1}{4} \\ i+\frac{n-1}{4} ; & \frac{n-1}{4}<i \leq \frac{n-1}{2}\end{cases}$
Case-4: If p is even and n is odd.
We define $f: V \rightarrow\left[-\frac{p}{2}, \ldots, \frac{p}{2}\right]^{*}$ as follows:
$f\left(u_{i}\right)= \begin{cases}i-\frac{n+1}{2} ; & 1 \leq i \leq \frac{n-1}{2} \\ i-\frac{n-1}{2} ; & \frac{n-1}{2}<i \leq n\end{cases}$
$f\left(v_{i}\right)= \begin{cases}i-\frac{3(n+1)}{4} ; & 1 \leq i \leq \frac{n+1}{4} \\ i+\frac{n+1}{4} ; & \frac{n+1}{4}<i \leq n\end{cases}$
Table-4 "edge condition for $A T_{n}$ "

Case No.	Value of \boldsymbol{n}	Value of \boldsymbol{p}	Edge condition
1	n is even	p is odd	$e_{f}(0)=n-1$ and $e_{f}(1)=n$
2	n is even	p is even	$e_{f}(0)=n-1$ and $e_{f}(1)=n$
3	n is odd	p is odd	$e_{f}(0)=n-1$ and $e_{f}(1)=n-1$
4	n is odd	p is even	$e_{f}(0)=n-1$ and $e_{f}(1)=n-1$

Thus, in each case we get $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence, Alternate Triangular snake graph $A T_{n}$ is integer cordial.
Example-2.8: An integer cordial labeling of $A T_{6}$ is shown in Figure-4.

Figure - 4 "alternate triangular snake graph with 6 vertices $\left(A T_{6}\right) "$

CONCLUSION

In this paper we have proved that triangular snake graph, double triangular snake graph, triple triangular snake graph and alternate triangular snake graph admits integer cordial labeling.

REFERENCES:

1. Parmar D, Joshi J. H K_{K} - Cordial Labeling of Triangular Snake Graph. Journal of Applied Science and Computations 2019; 6(3):2118-23.
2. Gross J, Yellen J. "Graph Theory and its applications", CRC Press.
3. Cahit I. Cordial graphs: A weaker version of graceful and harmonious graphs. Ars Combinatoria 1987; 23:201-08.
4. Gallian JA, "Graph Labeling" [online]. 2018 [cited 2018 December 21]. Available from: URL: https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6
5. Parmar N, Parmar D. Product Cordial Labeling in Context of some Graph Operations on Cycle. Mathematics Today 2018; 34-A:218-27.
6. Nicholas T, Maya P. Some results on integer cordial graph. Journal of Progressive Research in Mathematics 2016; 8:1183-94.
7. Vaidya SK, Shah NH. Cordial labeling of snakes. International Journal of Mathematics and its applications 2014; 2(3):17-27.
