On The Upper Open Geodetic Domination Number of a Graph

Vijimon Moni.V¹ and Robinson Chellathurai.S²

Register Number-12357,
¹St. Xavier’s Catholic College of Engineering, Chunkankadai-629 013
²Scott Christian College, Nagercoil-629 003,India.
Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012,
Tamil Nadu, India

ABSTRACT

Let \(G = (V,E) \) be a connected graph of order \(n \). A set \(S \subseteq V(G) \) is called an open geodetic dominating set of \(G \) if \(S \) is both open geodetic set and dominating set of \(G \). The minimum cardinality of an open geodetic dominating set of \(G \) is called the open geodetic domination number of \(G \) and is denoted by \(\gamma_{og}(G) \). An open geodetic dominating set of minimum cardinality is called \(\gamma_{og}^- \) set of \(G \).

An open geodetic dominating set \(S \) in a connected graph \(G \) is called a minimal open geodetic dominating set of \(G \) if no proper subset of \(S \) is an open geodetic dominating set of \(G \). The maximum cardinality of a minimal open geodetic domination set of \(G \) is the upper open geodetic domination number of \(G \) and is denoted by \(\gamma_{og}^+(G) \). A minimal open geodetic dominating set of cardinality \(\gamma_{og}^+(G) \) is called a \(\gamma_{og}^+ \) set of \(G \). The upper open geodetic dominating number of certain classes of graph are determined. Some general properties satisfied by this concept are studied. For any positive integers \(a \) and \(b \) with \(2 \leq a \leq b \), there exists a connected graph \(G \) with \(\gamma_{og}(G) = a \) and \(\gamma_{og}^+(G) = b \).

KEYWORDS: Open geodetic number, Open geodetic domination number, upper open geodetic dominating number.

AMS Subject Classification: 05C05, 05C69.

*Corresponding author

Vijimon Moni.V

Register Number-12357, Department of Mathematics
St. Xaviers Catholic College of Engineering,
Chunkankadai-629 003, Tamilnadu. India.
Email:vijimon1983@gmail.com.
Mobile: 8946046108.
INTRODUCTION

By a graph $G = (V, E)$, we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic graph theoretic terminology, we refer to Harary10. The $\text{distanced}(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u − v$ path in G. An $u − v$ path of length $d(u, v)$ is called an $u − v$ geodesic. A vertex x is said to lie on a $u − v$ geodesic P if x is a vertex of P including the vertices u and v. The closed interval consists of x, y and all vertices lying on some $x − y$ geodesic of G^1. For a non-empty set $S \subseteq V(G)$, the set $I[S] = \bigcup_{x, y \in S} I[x, y]$ is the closure of S. A set $S \subseteq V(G)$ is called a geodetic set if $I[S] = V(G)$. Thus every vertex of G is contained in a geodesic joining some pair of vertices in S. The minimum cardinality of a geodetic set of G is called the geodetic number of G and is denoted by $g(G)$. A geodetic set of minimum cardinality is called g-set of $G^{2, 4, 5, 6}$. $N(v) = \{u \in V(G) : uv \in E(G)\}$ is called the neighborhood of the vertex v in G. A vertex v is an extreme vertex of a graph G if $\langle N(v) \rangle$ is complete. A set of vertices D in a graph G is a dominating set if each vertex of G is dominated by some vertex of D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of $G^{3, 7}$. If $e = \{u, v\}$ is an edge of a graph G with $d(u) = 1$ and $d(v) > 1$, then we call e a pendant edge, u a leaf and v a support vertex. Let $L(G)$ be the set of all leaves of a graph G. For any connected graph G, a vertex $v \in V(G)$ is called a cut vertex of G if $V − v$ is no longer connected. A set of vertices S in G is called a geodetic dominating set if S is both a geodetic set and a dominating set. The minimum cardinality of a geodetic dominating set of G is its geodetic domination number and is denoted by $\gamma_g(G)$. A geodetic dominating set of size $\gamma_g(G)$ is said to be a γ_g-set of $G^{9, 12}$. A set S of vertices of a connected graph G is an open geodetic set if for each vertex v in G either v is an extreme vertex of G and $v \in S$ or v is an internal vertex of a $x − y$ geodesic for some $x, y \in S$. An open geodetic set of minimum cardinality is a minimum open geodetic set and this cardinality is the open geodetic number and is denoted by $og(G)$14. A set $S \subseteq V(G)$ is called an open geodetic dominating set of a connected graph G if S is both open geodetic set and dominating set of G. The minimum cardinality of an open geodetic dominating set of G is called open geodetic domination number of G and is denoted by $\gamma_{og}(G)$13. An open geodetic dominating set of minimum cardinality is called a γ_{og}-set of G.

For a cut vertex v in a connected graph G and the component H of $G − v$, the subgraph H and the vertex v together with all edges joining v to $V(H)$ is called a branch of G at v. The middle graph of a graph $G = (V, E)$ is the graph $M(G) = (V \cup E, E')$, Where $uv \in E'$ if and only if either u is a vertex of G and v is an edge of G containing u, or u and v are edges in G having a vertex in common.

The following theorem is used in sequel.
Theorem 1.1[13]. Let G be a connected graph of order n. Then

i. every open geodetic dominating set of a graph G contains its extreme vertices.

ii. every end vertex belongs to every open geodetic dominating set of G.

iii. if the set S of extreme vertices of G is a open geodetic dominating set of G, then S is the unique minimum open geodetic dominating set of G and $\gamma_{og}(G) = |S|$.

THE UPPER OPEN GEODETIC DOMINATION NUMBER OF A GRAPH

Definition 2.1. An open geodetic dominating set S in a connected graph G is called a minimal open geodetic dominating set of G if no proper subset of S is an open geodetic dominating set of G. The maximum cardinality of a minimal open geodetic dominating set of G is the upper open geodetic set domination number of G and is denoted by $\gamma_{og}^+(G)$. A minimal open geodetic dominating set of cardinality $\gamma_{og}^+(G)$ is called a γ_{og}^+-set of G.

Example 2.2. For the graph G given in Figure 1, $S_1 = \{v_1, v_2, v_3, v_9\}$ and $S_2 = \{v_1, v_2, v_3, v_5, v_7, v_9\}$ are open geodetic dominating sets of G. It is clear that no proper subsets of S_1 and S_2 are open geodetic dominating sets of G and so S_1 and S_2 are minimal open geodetic dominating sets of G. Hence $\gamma_{og}(G) = 5$ and $\gamma_{og}^+(G) = 6$. It is clear that there is no minimal open geodetic dominating set of cardinality greater than 6. Therefore

![Figure 1](image-url)

$\gamma_{og}^+(G) = 6$.

Theorem 2.3. Let G be a connected graph of order n. Then

(i) every minimal open geodetic dominating set of a graph G contains its extreme vertices. (ii) every end vertex belongs to every minimal open geodetic dominating set of G.

(iii) if G has the unique minimal open geodetic dominating set, then $\gamma_{og}(G) = \gamma_{og}^+(G)$.

Proof. (i) Since every minimal open geodetic dominating set of connected graph G is a open geodetic dominating set of G, by Theorem 1.1, (i) and (ii) follows immediately.

(iii) Let S be unique minimal open geodetic dominating set of a connected graph G. Then it is clear that $\gamma_{og}(G) = |S|$ and $\gamma_{og}^+(G) = |S|$. Hence $\gamma_{og}(G) = \gamma_{og}^+(G)$.
Theorem 2.4. For the complete graph $G = K_2$, $\gamma_{og}^+(G) = n$.

Proof. Since every vertex of G is an extreme vertex, then by Theorem 2.3(i) $\gamma_{og}^+(G) = n$.

Theorem 2.5. If a connected graph G has m extreme vertices, then $\gamma_{og}^+(G) \geq m$.

Proof. As every minimal open geodetic dominating set of a connected graph G contains its extreme vertices, by Theorem 2.3(i) $\gamma_{og}^+(G) \geq m$.

Theorem 2.6. Let $M(G)$ be the middle graph of a connected graph G of order n. Then $\gamma_{og}(M(G)) = \gamma_{og}^+(M(G)) = n$.

Proof. Let $M(G)$ be the middle graph of a connected graph G of order n. Then it is clear that set of extreme vertices of $M(G)$ is $V(G)$. It is easily verified that $V(G)$ is the unique minimal open geodetic dominating set of $M(G)$. Therefore, by Theorem 2.3(iii) $\gamma_{og}(M(G)) = \gamma_{og}^+(M(G)) = n$.

Theorem 2.7. Let G be a connected graph of order n, $2 \leq \gamma_{og}(G) \leq \gamma_{og}^+(G) \leq n$.

Proof. Since every open geodetic dominating set needs at least two vertices, Therefore $\gamma_{og}(G) \geq 2$. Since every minimal open geodetic dominating set is a open geodetic dominating set of G, $\gamma_{og}(G) \leq \gamma_{og}^+(G)$. Also since the set of all vertices of G is an open geodetic dominating set of $G, \gamma_{og}^+(G) \leq n$. Hence $2 \leq \gamma_{og}(G) \leq \gamma_{og}^+(G) \leq n$.

Remark 2.8. The bounds in Theorem 2.7 are sharp. For the path $G = P_2, \gamma_{og}(G) = 2$. For the star $G = K_{1,n-1}, \gamma_{og}(G) = \gamma_{og}^+(G) = n - 1$. For the complete graph, $G = K_n, \gamma_{og}(G) = \gamma_{og}^+(G) = n$. Also the bounds in Theorem 2.7 are strict. For the graph G given in Figure 2, $\gamma_{og}(G) = 7, \gamma_{og}^+(G) = 8$ and $n = 11$. Thus $2 \leq \gamma_{og}(G) \leq \gamma_{og}^+(G) \leq n$.

Theorem 2.9. For the connected graph $G \gamma_{og}^+(G) = 2$if and only if $\gamma_{og}^+(G) = 2$.

Proof. If $\gamma_{og}^+(G) = 2$, then by Theorem 2.7, $\gamma_{og}(G) = 2$. Conversely, let $\gamma_{og}(G) = 2$. Then G contains two extreme vertices u and v such that $S = \{u, v\}$ is the uniqueminimum γ_{og}^{-}-set of G.

![Figure 2](image-url)
Since S is subset of every open geodetic dominating set it follows that $S = \{u,v\}$ is the unique minimal open geodetic dominating set of G, so that $\gamma_{og}(G) = 2$.

Theorem 2.10. Let G be a connected graph of order n. If $\gamma_{og}(G) = n$, then and only if $\gamma_{og}(G) = n$.

Proof. If $\gamma_{og}(G) = n$, then by Theorem 2.7, $\gamma_{og}(G) = n$. Conversely, let $\gamma_{og}(G) = n$. Then $S = V(G)$ is the unique minimal open geodetic dominating set of G. Hence it follows that S is the unique minimum open geodetic dominating set of G, so that $\gamma_{og}(G) = n$.

Theorem 2.11. Let G be a connected graph of order n. If $\gamma_{og}(G) = n - 1$, then $\gamma_{og}(G) = n - 1$.

Proof. Let $\gamma_{og}(G) = n - 1$. Then by Theorem 2.7, $\gamma_{og}(G) = n$ or $n - 1$. If $\gamma_{og}(G) = n$, then by Theorem 2.10, $\gamma_{og}(G) = n$, which is a contradiction. Therefore $\gamma_{og}(G) = n - 1$.

Theorem 2.12. For the complete Bipartite graph $G = K_{m,n}$ with $2 \leq m \leq n$, $\gamma_{og}(G) = 4$.

Proof. Let $G = K_{m,n}$. Let $X = \{u_1, u_2, \ldots, u_m\}$ and $Y = \{v_1, v_2, \ldots, v_n\}$ be the partite sets of G. Let $S = \{u_i, u_j, v_r, v_s\}$. Then S is a minimal open geodetic dominating set of G and so $\gamma_{og}(G) \geq 4$. We show that $\gamma_{og}(G) = 4$. If not, let $\gamma_{og}(G) \geq 5$. Then there exists a minimal open geodetic dominating set S' such that $|S'| \geq 5$. If $S' \subseteq X$, then S' is not a open geodetic dominating set of G, which is a contradiction. If $S' \subseteq Y$, then S' is not a open geodetic dominating set of G, which is a contradiction. Therefore, $S' \subseteq X \cup Y$. Let $S' = S_1 \cup S_2$, where $S_1 \subseteq X$ and $S_2 \subseteq Y$. Then $|S_1| \geq 2$ and $|S_2| \geq 2$ since $|S'| \geq 5$, either S_1 or S_2 contains at least three vertices, without loss of generality let us assume that $|S_1| \geq 3$. Let $x, y, z \in S_1$ and $v \in S_2$. Then $x, y, z, u, v \in S'$. Let $S'' = S' - \{x\}$. Which is a contradiction to S' is a minimal open geodetic dominating set of G. Let $S'' = S' - \{x\}$. Then S'' is a open geodetic dominating set of G such that $S'' \subset S'$ which is a contradiction to S' is a minimal open geodetic dominating set of G. Therefore $\gamma_{og}(G) = 4$.

Theorem 2.13. For any connected non-complete graph G of order n, then $\gamma_{og}(G) \leq n - \delta(G)$.

Proof. Let S be a upper open geodetic dominating set of a non-complete connected graph G order n. Then $\gamma_{og}(G) = |S|$. We show that $|S| \leq n - \delta(G)$. Let $v \in S$. Assume that v is adjacent to m distinct vertices in S. Since $deg(v) > \delta(G)$, v must be adjacent to at least $\delta(G) - m$ vertices in $V(G) - S$ and so $|V(G) - S| > \delta(G) - m$. If $m = 0$, then $|V(G) - S| \geq \delta(G)$, that is $|S| \leq |V(G)| - \delta(G) = n - \delta(G)$. If $m > 0$, then the m distinct vertices belong to $N[S]$ and do not lie on a geodesic joining any pair of vertices of S. Since S is a minimal open geodetic dominating set of G, $|V(G) - S| \geq (\delta(G) - m) + m = \delta(G)$. Hence $|S| \leq n - \delta(G)$. Therefore $\gamma_{og}(G) \leq n - \delta(G)$.
Remark 2.14. The bounds in Theorem 2.13 are sharp. For the graph $G = K_{1,n-1}$ of order n. It is clear that $\delta(G) = 1, n - \delta(G) = n - 1$ and $\gamma^+_o(G) = n - 1$. Thus $\gamma^+_o(G) = n - \delta(G)$. The bounds in Theorem 2.13 can be strict. For the graph G in Figure 3, $\delta(G) = 1, \gamma^+_o(G) = 4, n = 6, n - \delta(G) = 5$. Thus $\gamma^+_o(G) < n - \delta(G)$.

![Figure 3](image_url)

Theorem 2.15. Let G be a connected graph of order n and $u \in V(G)$. If deg$(u) = 1$, then $\gamma^+_o(G - u) \leq \gamma^+_o(G)$.

Proof. Let $u \in V(G)$ and deg$(u) = 1$. Let S be a minimal open geodetic dominating set of $G - u$ with maximum cardinality, so $\gamma^+_o(G - u) = |S|$. Since deg$(u) = 1, u$ is an end vertex and u is adjacent to exactly one vertex, say v. By Theorem 2.3 every minimal open geodetic dominating set of G contains u. We consider two cases.

Case(i): Let $v \in S$. Since S is an open geodetic dominating set of $G - u$, there exists a vertex $w \in V(G - u)$ such that $w \in I[v, x] \subseteq I[S], w \in N[S], v, x \in I[S]$ and $d(v, x) \leq 3$. If $d(v, x) = 3$, then consider the set $S' = (S - \{v\}) \cup \{u, w\}$. If $d(v, x) \leq 2$ then consider the set $S' = (S - \{v\}) \cup \{u\}$. It is straightforward to verify that S' is a minimal open geodetic dominating set of G. So that $\gamma^+_o(G - u) = |S| \leq |S'| \leq \gamma^+_o(G)$.

Case(ii): Let $v \not\in S$. Then consider the set $S' = S \cup \{u\}$. It is straightforward to verify that S' is a minimal open geodetic dominating set of G. So that $\gamma^+_o(G - u) = |S| < |S'| \leq \gamma^+_o(G)$. Hence in both the cases, $\gamma^+_o(G - u) \leq \gamma^+_o(G)$.

Remark 2.16. The bounds in Theorem 2.15 are sharp. For the graph $G = P_4$, let u be an end vertex of G. It is clear that $\gamma^+_o(G - u) = 2$ and $\gamma^+_o(G) = 2$. Hence $\gamma^+_o(G - u) = \gamma^+_o(G)$. The bounds in Theorem 2.16 can be strict. For the graph G in Figure 4, $\gamma^+_o(G - u) = 3$ and $\gamma^+_o(G) = 4$. Hence $\gamma^+_o(G - u) < \gamma^+_o(G)$.

IJSRR, 8(1) Jan. - Mar., 2019
Page 1882
Remark 2.17. The converse of the Theorem 2.15 is need not true. For the complete graph K_n, it is clear that $\gamma_{og}^+(K_n) = n$, $\gamma_{og}^+(K_n - u) = n - 1$ and $\deg(u) = n - 1$ for every $u \in V(K_n)$. Hence $\gamma_{og}^+(K_n - u) < \gamma_{og}^+(K_n)$ but $\deg(u) \neq 1$.

Remark 2.18. Theorem 2.15 is not true if $\deg(u) \neq 1$. For the graph $G = P_5$, given in Figure 5, $\gamma_{og}^+(G) = 3$, $\gamma_{og}^+(G - u) = 4$ and $\deg(u) = 2 \neq 1$. Thus $\gamma_{og}^+(G - u) \neq \gamma_{og}^+(G)$.

Theorem 2.19. For any non-trivial tree T with $n \geq 3$, there exists a vertex $v \in V(T)$ such that $\gamma_{og}^+(T - v) = \gamma_{og}^+(T)$.

Proof. Let T be any non-trivial tree with $n \geq 3$. It can be verified that the result is true for $n = 3$. Since if $n = 3$ then $T = P_3$. Now consider the case that $n > 3$. Since T has at least one vertex with degree greater than or equal to 2, there exists a vertex $v \in V(T)$ with $\deg(v) \geq 2$ such that v is adjacent to at least one leaf and at most one non-leaf. If there exists a vertex v such that v is adjacent to at least one leaf and no non-leaf then it is clear that $T = K_{1,n-1}$ and v is the support vertex. So that $\gamma_{og}^+(T - v) = n - 1 = \gamma_{og}^+(T)$. If there does not exist a vertex v such that v is adjacent to exactly one leaf, then it is clear that v is adjacent to two or more leaves. Assume that v is adjacent to exactly one non-leaf. By Theorem 2.3, every minimal opengeodetic dominating set of T contains its leaves. So it is clear that $\gamma_{og}^+(T - v) = \gamma_{og}^+(T)$. If there exists a vertex v such that v is adjacent to exactly one leaf u and one non-leaf, then $\deg(u) = 1$ and $\deg(v) = 2$. Let $T' = T - v - u$. Since $\deg(u) = 1$, By Theorem 2.16, $\gamma_{og}^+(T - v) \leq \gamma_{og}^+(T)$. Hence, $\gamma_{og}^+(T') \leq \gamma_{og}^+(T - u) \leq \gamma_{og}^+(T)$. However, we have $\gamma_{og}^+(T') > \gamma_{og}^+(T) - 1$. If $\gamma_{og}^+(T') = \gamma_{og}^+(T) - 1$, then $\gamma_{og}^+(T) = \gamma_{og}^+(T - u)$. If $\gamma_{og}^+(T') > \gamma_{og}^+(T) - 1$, then...
\[y_{og}^+(T') = y_{og}^+(T) = y_{og}^+(T - u). \] Hence there exists a vertex \(v \in V(T) \) such that \(y_{og}^+(T - v) = y_{og}^+(T) \). ■

Remark 2.20. Theorem 2.19 is not true for any graph \(G \). For the complete graph \(K_n \).

\[y_{og}^+(K_n - v) \neq y_{og}^+(K_n) \] for every \(v \in V(K_n) \).

Theorem 2.21. Let \(G \) be a connected graph of order \(n \). If \(G' \) is a graph obtained by adding \(k \), where \(1 \leq k \leq n \), end edges to a graph \(G \), then \(y_{og}^+(G) \leq y_{og}^+(G') \leq y_{og}^+(G) + k \).

Proof. Let \(G \) be a connected graph of order \(n \) and let \(G' \) be a connected graph obtained from \(G \) by adding \(k \) end edges \(u_i v_i (1 \leq i \leq k) \), where each \(u_i \in V(G) \) and \(v_i \notin V(G) \). First we show that \(y_{og}^+(G) \leq y_{og}^+(G') \). Let \(S \) be a \(y_{og}^+ \)-set of \(G \). So \(y_{og}^+G) = |S| \). We now consider three cases.

Case(i): Let \(u_i \in S \) for all \(i \). Then let \(S' = S \cup \{v_1, v_2, \ldots, v_k\} \). Since each \(v_i \notin V(G) \) is an end vertex of \(G' \) and \(u_i \notin S, v_i \notin I[S] \) and \(v_i \notin N[S] \), \(S' \) is a minimal open geodetic dominating set of \(G' \). Therefore \(y_{og}^+(G) = |S| < |S'| \leq y_{og}^+(G') \).

Case(ii): Let \(u_i \in S \) for some \(i, 1 \leq i \leq k \). Since \(S \) is an open geodetic dominating set of \(G \), there exists a vertex \(v \notin S \) such that \(v \in I[u_i, x] \subseteq I[S], v \notin N[S] \) and \(d(u_i, x) \leq 3 \) for some \(x \in S \). If \(d(u_i, x) = 3 \), then consider the set \(S' = (S - \{u_i\}) \cup \{v_i, v\} \). If \(d(u_i, x) \leq 2 \), then consider the set \(S' = (S - \{u_i\}) \cup \{v_i\} \). It is easily verified that \(S' \) is a minimal open geodetic dominating set of \(G' \). Therefore \(y_{og}^+(G) = S \leq |S'| \leq y_{og}^+(G') \).

Case(iii): Let \(u_i \in S \) for all \(i, 1 \leq i \leq k \). Then by the similar argument as in case(ii), we can prove that \(y_{og}^+(G) \leq y_{og}^+(G') \). Next, we show that \(y_{og}^+(G') \leq y_{og}^+(G) + k \). Let \(S \subseteq V(G) \) and let \(S' = S \cup \{v_1, v_2, \ldots, v_k\} \) be a minimal open geodetic dominating set of \(G' \) with maximumcardinalityso that \(y_{og}^+(G') = |S'| = |S| + k \). Since \(S' \) is a minimal open geodetic dominating set of \(G' \), \(u_i \notin S \) for all \(i, 1 \leq i \leq k \). We show that \(S \) is a minimal open geodetic dominating set of \(G \). If \(u_i \in I[S] \) and \(u_i \notin N[S] \) for all \(u_i \in V(G) \), then \(S \) is a minimal open geodetic dominating set of \(G \). If, then there exists a vertex \(u_i \notin V(G) \) such that \(u_i \notin I[S] \) or \(u_i \notin N[S] \). Then the set \(S \cup \{u_i\} \) is a minimal open geodetic dominating set of \(G \). Hence \(y_{og}^+(G') = |S| + k \leq y_{og}^+(G) + k \).

Theorem 2.22. For any two integer \(a \) and \(n \) with \(2 \leq a \leq n \), there exists a connected graph \(G \) with \(y_{og}^+(G) = a \) and \(|V(G)| = n \).

Proof. It can be easily verified that the result is true for \(2 \leq n \leq 3 \). If \(n = 2 \), then \(G = K_2 \) and if \(n = 3 \), then \(G \) is either \(P_3 \) or \(K_3 \). For \(n \geq 4 \). If \(a = n \), then \(G = K_n \) and if \(a = n - 1 \), then \(G = K_{n-1} \). For \(a \leq n - 2 \). Let \(P: x, y, z \) be a path on three vertices. Let \(G \) be a graph obtained from \(P \) by adding new vertices \(z_1, z_2, \ldots, z_{a-3}, v_1, v_2, \ldots, v_{n-a} \) and joining each \(z_i (1 \leq i \leq a - 3) \) with \(z \), and
joining each \(v_i \) \((1 \leq i \leq n - a) \) with \(x \) and \(z \). The graph \(G \) is shown in Figure 6. Let \(S = \{z_1, z_2, ..., z_{a-3}\} \). Then by Theorem 1.1 (i) \(S \) is a subset of every open geodetic dominating set. It is easily verified that \(S \cup \{u\} \), and \(S \cup \{u, v\} \) is not an open geodetic dominating set of \(G \) and so \(\gamma_{og}(G) \geq a \). Now \(S' = S \cup \{x\} \cup \{y, v_i\} \) \((1 \leq i \leq n - a) \) or \(S' = S \cup \{x\} \cup \{v_i, v_j\} \) \((1 \leq i, j \leq n - a) \) is a minimal open geodetic dominating set of \(G \) and so \(\gamma_{og}(G) \geq a \). We prove that \(\gamma_{og}(G) = a \). If not, suppose that \(\gamma_{og}(G) > a \). Then there exists a minimal open geodetic dominating set of \(S'' \) with \(|S''| \leq a + 1 \). Then \(S'' \) contains at least two \(v_i \) \((1 \leq i \leq n - a) \). Now \(v_i \) must lie on \(I[x, z_j] \) for \((1 \leq i \leq n - a) \) and \((1 \leq j \leq a - 3) \). Then \(x \) must belong to \(S'' \). Then it follows that \(S' \subset S'' \), which is a contradiction to \(S'' \) is a minimal open geodetic dominating set of \(G \). Therefore \(\gamma_{og}(G) = a \).

\[\]

Theorem 2.23. For any two integer \(a \) and \(b \) with \(2 \leq a \leq b \), there exists an aconnected graph \(G \) with \(\gamma_{og}(G) = a \) and \(\gamma_{og}(G) = b \).

Proof. It can be easily verified that the result is true for \(2 = a = b \). Consider the graph \(G = K_n \). It is clear that \(\gamma_{og}(K_2) = 2 \) and \(\gamma_{og}(K_2) = 2 \). If \(2 < a = b \), then consider the graph \(G = K_n \) \((n > 2) \). It is clear that \(\gamma_{og}(K_n) = \gamma_{og}(K_n) = n \). If \(2 < a = b \), then consider the graph \(G = K_{1,n} \). It is clear that \(\gamma_{og}(K_{1,n}) = \gamma_{og}(K_{1,n}) = n - 1 \). Now we consider \(2 < a < b \). Let \(P : x, u, v, w, t \) be a path on five vertices. Let \(H \) be a graph obtained from \(P \) by adding new vertices \(z_1, z_2, ..., z_{a-4} \) and joining each \(z_i \) \((1 \leq i \leq a - 4) \) with \(u \). Let \(G \) be a graph obtained from \(H \) by adding new vertices \(y, s, v_1, v_2, ..., v_{b-a+1} \) and joining each \(v_i \) \((1 \leq i \leq b - a + 1) \) with \(x \) and \(y \) and joint \(s \) with \(y \) and \(t \), the graph \(G \) is shown in Figure 7. First we show that \(\gamma_{og}(G) = a \). Let \(Z = \{z_1, z_2, ..., z_{a-4}\} \) be the set of all endvertices of \(G \). By Theorem 1.1 (i) \(Z \) is a subset of every open geodetic dominating set of \(G \). It is easily verified.
that Z is not a open geodetic dominating set of G. It is easily verified that $Z \cup \{x_1\}$ or $Z \cup \{x_1, x_2\}$ or $Z \cup \{x_1, x_2, x_3\}$ is not a open geodetic dominatingset where $x_1, x_2, x_3 \notin Z$ and so $\gamma_{og}(G) \geq a$.

Now $S = Z \cup \{y, s, w, u\}$ is an open geodetic dominating set of G so that $\gamma_{og}(G) = a$. Next we prove that $\gamma_{og}^+(G) = b$. Let $W = Z \cup \{v_1, v_2, ..., v_{b-a+1}, s, t, u\}$. Then W is an open geodetic dominating set of G and so $\gamma_{og}^+(G) \geq a - 4 + b - a + 1 + 3 = b$. First we prove that W is a minimal open geodetic dominating set of G. Suppose that W is not a minimal open geodetic dominating set of G. Then there exists $W' \subset W$ such that W' is a open geodetic dominating set of G. Hence there exists $z \in W$ such that $z \notin W'$. By Theorem 1.1 (ii) $z \neq z_i (1 \leq i \leq a - 4)$. If $z = v_i (1 \leq i \leq b - a + 1)$ then W' is not a dominating set of G. If $z = s$ or t or u, then W' is not an open geodetic set of G. Hence W' is not an open geodetic dominating set of G. Therefore W is a minimal open geodetic dominating set of G. Next we prove that $\gamma_{og}^+(G) = b$. Suppose that $\gamma_{og}^+(G) \geq b + 1$. Then there exists a open geodetic dominating set of T such that $|T| \geq b + 1$. By Theorem 1.1 (ii) $Z \subset T$. Suppose that $v_i \notin T$ for some i. Then $z \notin T$ and either v or $w \in T$. Let us assume that $v \in T$. Now s and v must lie on some pair of vertices of T.

Which implies t must belongs to T. Hence T contains open geodetic dominating set, which is a contradiction. Therefore $\gamma_{og}^+(G) = b$.

REFERENCES

