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ABSTRACT 

We present the theoretical study of thermal conductivity and its finite-size scaling in 2D He-4 

system.This paper describes the expected behavior of the system if it is assumed that finite-size 

scaling is valid for the conductivity. The predicted scaling function is used to obtain a quantitative 

assessment of the gravity effect on Earth-based measurements for different L  and typical sample 

thickness (height) h. The KA results showed that the thermal resistivity /1R  in the 

cylindricalgeometry remains finite at T , and decays exponentially as the temperature T is reduced 

below T . The data confirms that there is no phase transition in theone-dimensional system, as had 

been expected on general theoretical grounds. 
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INTRODUCTION 
 An interesting issue in condensed-matter physics is the nature of the interface between solids 

and fluids. The microscopic aspects of systems near boundaries are difficult to study. However, 

when the fluid is near a critical point, the boundary layer adjacent to the solid surface acquires a 

macroscopic thickness. When the fluid phase is of limited spatial extent, the boundary will influence 

significantly the average macroscopic properties of the system. Thus, a critical fluid system which is 

confined can be used to study boundary effects. In addition to these “surface” effects, a system 

confined in a finite geometry will also exhibit “bulk “finite-size effects; both contributions are 

expected to be describable within the general context of finite-size scaling1 and by specific 

calculations based on the renormalization-group theory (RGT)2, and we will collectively refer to 

them as “finite-size effects”. 

There is a long history of experimental work on finite-size effects on equilibrium properties 

near .T However, so far all of this work has been restricted to saturated vapor pressure (SVP). Much 

of the older work was carried out in poorly defined geometries with a significant distribution of 

characteristic sizes such as found in packed powders, making it difficult to interpret the results 

quantitatively in terms of modern theories. More recently measurements have been made in more 

uniform geometries of better known dimensions3-7. 

The interpretations of these results are in part in conflict with theoretical predictions based on 

scaling arguments and RGT considerations. Thus there is a strong need for additional accurate 

measurements over a wide range of the pressure P and of the size L or precisely known and uniform 

geometries. Systems with confinement in one, two, and three dimensions, corresponding to parallel-

plate, cylindrical, or cubic geometries respectively, are expected to represent three different 

universality classes and need to be investigated. Experiments on transport properties in manifestly 

finite geometries are almost on-existent. Here at least three cases can realistically be investigated. In 

parallel-plate geometry one could have the heat flow Q


parallel or orthogonal to the plates. In a 

cylindrical geometry Q


 most likely would be in the axial direction. Qualitatively different finite-size 

effects would be expected for the three cases. The most relevant measurements we know the ones of 

the thermal conductivity   carried out by Kahn and Ahlers8 (KA) onHe-4 at SVP. Their sample was 

contained in the long, narrow tubes of a glass capillary array (GCA) (also known as micro-channel 

plates) and thus represents the cylindrical geometry with axial heat flow. The tube radius L was 1 

μm. The major goal of the flight-definition project “Boundary Effects on transport properties and 

dynamic finite-size scaling near the Super fluid Transition line of 4He” (BEST) is to provide data for 
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  in the same geometry over a wide range of L and P . Plans for this work will build upon the 

Admeasurements and the assumption of finite-size scaling.  

This paper describes the expected behavior of the system if it is assumed that finite-size 

scaling is valid for the conductivity. The expected scaling function is exploited to find a quantitative 

valuation of the gravity effect on Earth-based measurements for different L  and typical sample 

thickness (height) h and to The KA results indicated that the thermal resistivity /1R  in the 

cylindrical geometry remains finite at T , and decays exponentially as the temperature T is 

decreased below T . The data confirm that there is no phase transition in throne-dimensional system, 

as had been expected on general theoretical grounds. 

Important as these results may be, by themselves they are not adequate to test the ideas of 

finite-size scaling for transport properties because the dependence upon the characteristic size L  of 

the geometry is at issue and measurements over a wide range of L  are required. They also do not 

explore the expected universality of the corresponding scaling function along the  -line as a 

function of pressure. Thus the significance of the 1 μm data would be enormously enhanced by 

equivalent results for different characteristic sizes and over arange of P . It turns out that a 

significant range of L  can be explored only by extending it to relatively large values. However, for 

8L μm the effect of Earth’s gravity9prevents definitive measurements and experiments are feasible 

only in microgravity. 

THEORETICAL ANALYSIS 

 A quantitative analysis of the conductivity  Lt,  of the finite system requires a quantitative 

knowledge of     ,tt   for the bulk system. The dependence upon t  of the bulk conductivity, 

although complicated, is already remarkably well understood both experimentally10-14and 

theoretically15. There do remain some unresolved issues, however, which are of interest for their own 

sake as well as important to the quantitative interpretation of  Lt, . 

In Fig. 1 we show   against 1/  TTt on logarithmic scales for saturated vapor pressure (SVP) 

and for 28P bar. Similar results exist at several intermediate pressures, but are omitted here for 

clarity. For sufficiently small t , the data to a good approximation fall on straight lines, and thus can 

be described by the power law 
xt  0                              (1) 

However, on closer inspection one finds that the exponent 



Md. Rafiquezaman Answari et al., IJSRR 2019, 8(2), 24-39 

IJSRR, 8(2) April. – June., 2019                                                                                                        Page 27 
 
 

  
  td

dx
ln
ln 

                                            (2) 

But the exponent is an effective exponent which depends very slightly upon t . Furthermore, 

on theoretical grounds one would have expected x  to have a universal asymptotic value equal or 

close to 2/ , which on the basis of second-sound-velocity measurements has a value near 0.335216. 

However, measurements of   give a slightly pressure dependent effective value which varies from 

44.0x  at SVP to 41.0x  at 28 bar. This was explained quantitatively nearly two decades ago by 

detailed RGT calculations of non-universal (i.e. pressure dependent) non-asymptotic contributions to 

 15. The quantitative explanation of the rather complicated behavior of  Pt,  along the entire 

transition line  PT  is a major success of the RGT. However, the comparison between experiment 

and theory still has its limitations, as can be seen from the range of the data in Fig. 1. The data are 

only for 6103 t . For transport properties this is a more severe limitation than for equivalent 

results for equilibrium properties because the critical region where approximate power law 

dependence is found is much narrower. As seen in Fig. 1, at SVP this region is 310t . The range 

becomes even narrower at higher pressure, being confined to 410t at 28 bar. Thus it would be 

extremely useful to extend the range to smaller t   to provide a more stringent test of the theory. 

Some extension of the range can actually be obtained on Earth with the use of high-resolution 

thermometry17; but for 710t gravity would prevent measurements from being made9. In a 

microgravity environment, this range could be extended by another decade or two. This is 

particularly important because recent high-resolution measurements18at vapor pressure have 

suggested a departure from the RGT prediction for 610t . It is also important for the unambiguous 

determination of the finite-size contribution for the large values 25L  or 50μm envisioned for the 

microgravity experiment. Thus a secondary objective of BEST was to obtain high-quality data of the 

bulk conductivity along several isobars for 810t or so. 

At present, the RGT is not sufficiently advanced to provide predictions of the critical 

behavior of transport properties in a confined geometry near T  of He-4 20. Thus we can describe the 

anticipated results only within the general context of phenomenological scaling arguments. Although 

scaling has been used for finite-size effects on static properties, there is at present no experimental 

foundation for its application to transport properties. Thus our work will provide the theoretical study 

of finite-size scaling for the dynamics. To formulate the problem more precisely, we assume that 

 t can be written in the form of Eq. (1). This approximation is justified to the extent to which the 
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data close to T  in Fig. 1 fall on straight lines. For the finite system we will find it more convenient 

to discuss the thermal resistivity    LtLtR ,/1,   because the difference between it and

    ,tRtR remains finite. 

 For the cylindrical geometries, we will simply take L  to be equal to the cylinder radius. In 

that case the finite-size effect well above T , where surface effects dominate, should on geometrical 

grounds be the same as for parallel plates with spacing L  and with Q~  parallel to the plates because 

the ratio of the surface area to the cross sectional area is the same. However, near and below T  

qualitatively different behavior would be expected for the two cases. Regardless of the geometry, and 

in analogy to static scaling arguments, we expect the relationship between  LtR ,  and  tR to be 

given by a function only of /L where 
  t0                                               (3) 

with 6705.0 [20] is the bulk correlation length above T .  

Thus we write  tR in terms of  t  as 

   //
00

xxRtR                                     (4) 

and make the Ansatz 

    










LFtRLtR ~,                                        (5) 

This appears reasonable above T , but below the transition where   0tR , it is not obvious that this 

will lead to a meaningful expression. Proceeding nonetheless, we find after some rearrangement the 

scaling function 

    



/

00

,
x

L
R

LtRXF 







                                        (6) 

with 

tLX




/1

0








                                        (7) 

Equivalently, one can obtain 

      



/

00

,
x

L
R

tRLtRXG 







                                        (8) 
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Above T  the function  XG is more sensitive to the finite-size effect since the bulk resistivity is 

subtracted; but below the bulk transition   0tR  and thus  XG is the same as  XF . 

The most appealing result would be to find that the functions  XF and  XG are universal, 

implying that (for a given geometry) they do not depend on L and P . We believe that this 

universality is particularly uncertain below T where   0tR . Our concern is enhanced by the fact 

that (at least for the cylindrical geometry)    tRLtR ,  has a very different dependence upon t  

above and below T . Above the transition, where the difference is expected to be determined by 

surface effects, experiment suggests that it varies as t . However, below T  the difference decays 

exponentially as t  increases. This behavior suggests that the physical phenomena which dominate 

the finite-size effects on the two sides of the transition are quite different from each other. The 

exponential dependence below T  suggests that the physics of the super fluid phase comes into play 

in a crucial way, perhaps in the form of phase-slip phenomena such as in one-dimensional 

superconductors. Of course this does not exclude the possibility that the finite-size effects on both 

sides scale with  , and that the functions F and G  which we have defined are nonetheless 

universal. Clearly an experimental determination of F and G  at several values of L and P  will be 

extremely instructive. It is to be expected that the functions  XF and  XG  as defined by Eqs. (6) 

to (8) will be found to be pressure dependent, and thus apparently non-universal. This is so because 

the simple power law description which we have assumed for  tR , although it fits the data 

extremely well, is inconsistent with universality because the effective exponent x  depends on P . A 

more complete theory, based on a universal asymptotic  tR and the known non-universal non-

asymptotic corrections, might recover the expected universality as a function of pressure. However, 

such a theory does not appear to exist at this time. Thus we are at present unable to make quantitative 

predictions of the pressure dependence of the finite-size effect. However, we expect that the 

determination at SVP of the function  XG for the excess resistivity should still be valid to a 

reasonable approximation even at the higher pressures.  

The main purpose of the planned work is to determine whether  LtR ,  for the cylindrical 

geometry can indeed be written in the form of Eqs. (6) and (8), and to determine whether the 

functions  XF and  XG are universal, i.e. independent of L and P . This will be possible only when 

data become available along several isobars over a significant range of L  and of t . There are several 

factors which restrict the range of L  which can be used. One of them is the practical issue of the 
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availability of suitable geometries. Commercially one has not been able to obtain GCA’s with 

capillary radii smaller than 0.5 μm. However, even if one were to produce smaller capillaries, they 

would be only of limited use. The reason for this is that a comparison with theory will be easiest in 

the range of t  where the bulk system shows a strong power law divergence. This range often is 

referred to as the “critical region”. It is known that the correlation-length amplitude 0  is only 

weakly dependent on pressure21.Thus one expects a given L  to produce a finite-size-affected range 

of t  which is nearly pressure independent. On the other hand, from Fig. 1 it is clear that the critical 

region for the dynamics is strongly pressure dependent. At high pressure it is restricted to 4103 t

, whereas at vapor pressure it covers the range 3103 t . Thus it is desirable to use geometries with 

characteristic capillary radii which are large enough for the finite-size effects to occur for 4103 t
. Examination of the 1μm data (see below) shows that the finite-size region extends over the range 

410t .  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The thermal conductivity of He-4 above T  as a function of the reduced 
temperature [14] at vapor pressure (open symbols) and at 28 bar (solid symbols). 

The results are shown on logarithmic scales. 

Assuming the scalingof Eq. 6, we conclude that the finite-size region will be about as wide as 

thecritical region at the higher pressures when 5.0L μm, and that the amountof useful information 

obtainable diminishes as L  decreases below half a μm.Thus our only real option for covering a wide 

range of L  is to go to large L .However, for large L  the finite-size effects of interest occur very 
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close to T where the sample in homogeneity due to the Earth’s gravitational acceleration has a 

significant influence. 

The gravity effect is illustrated in Fig. 2 in terms of the phase diagram of He-4.The   line, 

along which the liquid undergoes a transition from a super fluid (He-II) to a normal (Navier-Stokes) 

liquid (He-I), extends from 2.172 K at vapor pressure (0.05 bar) to 1.763 K at the melting pressure 

(30.13 bar)21, 22.The in homogeneity induced by gravity9 is due to the hydrostatic pressure which 

varies with height in the liquid. This pressure variation has the effectof inducing a vertical spatial 

variation of the transition temperature. This is illustrated in more detail in the right portion of Fig. 2. 

If the sample top is ata pressure 0PP  , then the bottom will be at ghPP  0  where   is the fluid 

density, g  the gravitational acceleration, and h  the sample height. Overthis pressure  

the transition temperature  PT varies significantly. The parameter   zT  /  is  



 










z
Tg                                                       (9) 

This provides a quantitative measure of the severity of the gravity effect. Values of  P , in 

μK/cm, are given in Fig.3. One sees that, for a typical sample of size 1 cm at SVP, one has a two-

phase region over a temperature interval of  1.27μK. Thus it is not possible to approach the transition 

more closely on average than within a μK or so. At higher pressures  P increases because the 

slope of the  -line  TP  / decreases and the density increases. At 30bar the two-phase region for 

a sample of a given height would be wider by afactor of 2.5. Of course the effect of gravity on the 

average measured properties extends well beyond the two-phase region. 
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Fig. 2. Schematic phase diagram of 4He, and an illustration of the gravity effect. 

 Associated with the distribution of transition temperatures is a more subtle “averaging” over 

a vertical range g  of the properties due to the growth of the correlation length near the local 

transition. Thus the local properties are no longer those of the three-dimensional bulk transition. For 

most experiments it is smaller than the effect due to the variation of  zT over the sample height .h

Returning to the finite-size samples, it turns out that helium at SVP and in cylinders with 8L

μmcan not be studied effectively on Earth because the gravitational “rounding” of the resistivity will 

become significant compared to the expected finite-size rounding. At 30P bar, gravitational 

rounding becomes a problem already for 5.3L μm. In microgravity the maximum useable size is 
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limited only by the experimental temperature resolution, and is near 50 μm. Thus the microgravity 

experiment can add a factor of 6 to 14 in L  (depending on the pressure) to the size range accessible 

on Earth. We note that a factor of 6 (14) in L  is a factor of 15 (50) for the scaling variable X . 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Fig. 3. The width per cm of sample height of the temperature range of isothermal coexistence of He-I and He-II 

(the two-phase region) as a function of the pressure. 

DATA ANALYSIS AND DISCUSSION 

 An effective evaluation of the finite-size thermal conductivity of 4He near T requires an 

accurate knowledge of the bulk conductivity . The bulk conductivity was measured by several 

authors10-13. We will use the data in12  for their “Cell F” (TA) because they cover a very wide range 

of reduced temperatures, and because they are the only set we know of which covers several isobars 

in addition to saturated vapor pressure (SVP).The SVP and 28 bar data for   were shown already in 

Fig. 1 over a wide range of t . They extend from 6103 t to 0.1t . The large- t data are necessary 

for the evaluation of the finite-size data because the bulk and finite-size measurements must be 

normalized to each other in a region where finite-size effects are negligible. For small t the bulk data 

are shown in the form of the resistivity on logarithmic scales in Fig. 4. Deviations from fits of the 

power law 
xtRR 0                                                    (10) 

to these data are shown in Fig. 5. The fits yielded the parameters 
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3
0 10312.8 R  cm K s / erg,    4397.0x                        (11) 

at saturated vapor pressure and 
2

0 10507.1 R  cm K s / erg,    4127.0x                        (12) 

at 28P bar.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.The resistivity /1R  in the critical region for bulk helium at SVP (open circles) and at 28 bar (solid 

circles) on logarithmic scales. The solid lines are power law fits to the data for 4102 t  at SVP and 
5108 t at 28 bar. 

 An analysis at all pressures where measurements exist 14 (0.05, 6.85, 14.73, 22.30, and 28.00 

bar) yielded exponents which could, within their uncertainty, be represented by 

Px 000994.04395.0                                 (13) 

where P  has the units bar. Fits of the data with the exponent fixed at that given by Eq. (13) gave 

,00831.00 R  0.00974, 0.01107, 0.01302, and 0.01498   cm K s / erg for the five isobars. In the 

calculations of finite-size and gravity effects given below we will use x  as given by Eq. (13) and 0R  

given by linear interpolation between the values given here. 

The conductivity ofHe-4 at SVP in GCAs with capillary radii of 1 µm has been examined. It 

was not possible to determinethe effective area of the helium with sufficient accuracy. In addition, 
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the parallel conduction through the cell wall, the glass, and the epoxy used to seal the GCA to the 

wall was not measured independently. Therefore the parallel conduction and the length-to-area ratio

39.0/ Ah  cm-1were obtained by adjusting them so as to cause the helium conductivity to agree 

with the TA data in the temperature range 34 106107   t . 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. The thermal conductivity at SVP for bulk helium (solid circles) and for helium in a GCA with pore radii of 

1 µm (open circles). The horizontal bar shows the range of t over which the finite-size data were fit to the bulk 

data by adjusting the parallel (“wall”) conduction and the area-to-length ratio. 

 In this range, which is shown in Fig. 5 by the solid horizontal bar, the finite-size effect on  

is expected to be negligibly small. The results are shown over a wide range of t  in Fig. 5. The solid 

circles are the TA bulk data, and the open  one sare the results for the finite geometry. As T  is 

approached, the finite-size effect becomes apparent. 

The data for the restricted geometry do not diverge like the bulk data, and instead approach a finite 

value as t  vanishes. Data for R  in the finite-size-affected region of t  are shown on linear scales 

inFig. 6. They reveal a rounded transition, with no evidence of a singularity, as would be expected 

for a one-dimensional system. Above T the finite-size effect on R  extends to quite large values of t

. This is characteristic of the surface contribution to finite-size effects, as seen in static properties. 

Below  ,0tT  LtR ,  approaches zero rather more rapidly. 

The behavior below T  is shown in more detail in Fig. 7. One sees that R reaches a finite 

value as t decreases. This saturation is due to the series resistance of the copper end plates of the 
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conductivity cell and to the series boundary resistance which had not been subtracted. It corresponds 

to an effective boundary resistivity 7101.2 bR  cm s K / erg. When bR is subtracted, the data yield 

the dashed line in the figure. One sees that the dependence of R  on t at low temperatures is 

consistent with an exponential decay of R as t decreases. The very rapid decrease of R  with 

decreasing t  permits its measurement only over a relatively narrow range of t . As a guide, the two 

horizontal dotted lines correspond to bR and bR2 .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. The thermal conductivity at SVP for bulk helium (solid circles) and forhelium in a GCA with pore radii of 

1 µm (open circles) in the finite-size region onlinear scales. The solid line is the fit Eqs. (10) and(11) to the bulk 

data. 
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Fig. 7.The thermal resistivity R  close to T  at SVP for bulk helium (solid circles) and for helium in a GCA with 
pore radii of 1 µm (open circles). The vertical scale is logarithmic and the horizontal one is linear. The solid line is 

the fit Eq. (10) to the bulk resistivity. The dashed line is  LtR , after subtraction of the boundary contribution. 

 At a reduced temperature ,101.1 5  LtR ,  is about equal to bR  and for smaller t  LtR ,

soon ceases to be measurable. A fit of  LtR ,  (after the subtraction of bR ) to an exponential function 

gave 
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with 0052.0dR  s cm K / erg and 6
0 101.1 t . We note that in the assumed functional form Eq. 

(14) the argument of the exponential is linear in the absolute temperatureT . Because of the narrow 

range of t  over which the exponential decay of R can be measured, the data are not sufficient to rule 

out a somewhat different dependence upon T . Clearly it would be interesting to examine the 

behavior of R  below T  theoretically, initially perhaps in the mean-field limit and in analogy to the 

known behavior of one-dimensional superconductors. A specific prediction could then be tested for 

consistency with the data. Of course it would be particularly interesting to see whether the scaling 

with L/  implied by Eq. (6) is consistent with the expected behavior. 
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CONCLUSION 

 In conclusion, the ground-based measurements of the thermal conductivity  Lt,  near the 

bulk super fluid-transition line  PT of He-4 confined in cylindrical geometries with axial heat flow 

provides an evaluation of existing data near T  at SVP in cylinders of 1L µm radius and uses these 

to derive a scaling function for the resistivity    .,/1, LtLtR   The scaling function is used to 

predict the conductivity for other values of L and P . These predictions are used to assess 

quantitatively the effect of gravity on potential Earth-based measurements. It is found that the gravity 

effect for R  is particularly severe below T .  
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