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ABSTRACT 

The correlated dynamical modes of liquid alkali metal, liquid sodium, has been 
theoretically calculated at temperature 388.4 K for six different wave-vector values: 2.4 nm−1, 6.96 
nm−1, 22.4 nm−1, 44.8 nm−1, 68.8 nm−1, 88.0 nm−1. At this temperature, which is just near to its 
melting point, the fluid under consideration is essentially a classical system of interacting particles 
and hence, the modified microscopic theory of fluids is applied for the present theoretical 
investigation. The microscopic theory carries expressions for spectral line shape of dynamical 
structure factor, S(κ,ω), where ħκ and ħω are momentum and energy transfers respectively, which 
is further related to various physical quantities like velocity of sound and dispersion relation and 
hence yields the complete dynamics of a given fluid. Detailed dynamical structure factors, S(κ,ω),  
have been computed in the entire κ -range and are compared with the scale reduced experimental 
values obtained from IXS(inelastic x-ray scattering) spectra of liquid lithium. The two are found to 
be in good agreement with each other. Variations of collective mode frequencies and velocity of 
sound with wave-vector have also been reported. 
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1. INTRODUCTION 
Fluids comprise a disordered system of correlated particles and the degree of correlations 

depends upon the various physical parameters. Dynamics of such disordered systems is quite 

involved and is hard to study. However, the collective excitations of fluids can be observed 

experimentally when they are perturbed by some external probe like neutron or photons. Data 

obtained from inelastic scattering of neutrons, however contains a complicated blend of coherent 

and incoherent cross-sections whereas inelastic x-ray scattering predominantly yields coherent 

scattering cross-sections. From so obtained double differential scattering cross-sections, the 

detailed coherent dynamical structure factors, S(κ,ω), can be extracted which are able to explain 

the complete collective dynamics of any fluid.(Here, κ and ω refers to wave vector and frequency 

respectively). In the present communication, an attempt has been made to explain the coherent 

dynamics of a liquid alkali metal, liquid sodium, near its melting point at 388.4 K( melting point of 

Na is 370 K). At this temperature, liquid Na constitute a dense system of 0.0237 atoms per Å3 

whose inter-particle separation is much larger than its thermal de-broglie wavelength, λth i.e. 2rs 

>>λth (rs, being the radius of a spherical Na atom). Thus, liquid sodium at 388.4 K and density 

0.0237 atoms/ Å3 behaves as a classical liquid and its dynamics can be explained using modified 

microscopic theory of liquids. 

Microscopic theory of liquids evaluates the dynamical disorders generated due to some 

external perturbation by solving classical equations of motion of constituent particles then taking 

averages of their trajectories over full time span. Solution of equations of motion evolves density-

density response function which is further related to the imaginary part of dynamical structure 

factor, through fluctuation-dissipation theorem. Dynamical structure factor, S(κ,ω), is Fourier 

transform of space-time dependant correlation function G(r,t) which at 0t is generalized to the 

static pair correlation function g(r). The dynamical structure factor, thus, provides the complete 

information about the dynamics of a fluid. 

The dynamical structure factor so obtained exhibit sharp peaked structures with finite widths. 

This is unlike the real feasible picture for fluids where these structures are more damped. This gap 

has been filled by including a characteristic relaxation time, a parameter which is related to inter-

particle interaction, mass, temperature, density and diffusion co-efficient. This form of the 

microscopic theory has been used to explain the dynamics of various fluids1,2,3,4. The theory, 

however, has been further modified to incorporate all time behaviour of realistic intermediate 

scattering functions. This modified theory has recently been used to successfully explain the 

coherent dynamics of a wide variety of liquids5,6,7and now has been used in the present 

investigation. 
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2. MATHEMATICAL FORMALISM 
General expression for dynamical structure factor in the present theory is turned to be: 
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where 22 )( kDkDeff   , D() being the  -dependent self diffusion coefficient and ‘m’ is 

atomic mass. 

Characteristic frequency, k is given as : 
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Here, E , is maximum elastic frequency which is related to inter atomic interaction potential V(r) 

and static pair correlation function g(r) as follows: 
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where    = D 2 , D being the  -dependent self diffusion coefficient and  = (kBT)-1. 

longitudinal current-current correlation function ,   ,lJ , is related to dynamical structure factor 

by following expression: 

    )5(,, 2

2



 SJ l   

3. RESULTS AND DISCUSSION 
As is discussed in prior sections, liquid sodium is a classical system of interacting correlated 

particles. To work out the dynamics of this fluid system, the quantitative form of an interaction 

potential is required. In the following computations, interaction potential, v(r), for liquid sodium as 

given by Paskin and Rahman8, which explains the experimental static structure factor9, has been 

used. The potential for liquid Na is shown in Figure1 with solid curve(────) and exhibit the 

peculiar behaviour for metallic potentials, consists a soft core part associated with a repulsive 

oscillatory part. Inter-atomic potentials for two other alkali metals, liquid caesium and liquid 
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rubidium have also been plotted in Figure1 with dash dot curve(− ∙ − ∙ −) and dotted 

curve(∙∙∙∙∙∙∙∙∙∙∙∙∙) respectively, near their melting points. Though all these alkali metals show 

oscillatory behaviour of v(r), the cycle of oscillations is smaller in Na which can be attributed to its 

smaller atomic size. 

 

Figure1: Variation of inter-atomic potential V(r) with inter particle separation r, for lq. Na(──) ; lq. Cs(− ∙ 

−);lq. Rb (∙∙∙∙∙∙∙). 

With this form of inter-atomic potential and pair correlation function g(r)9, ro and Einstein 

frequency, ωE, are calculated using expression(3) and turns to be 0.35nm and 13.1 ps-1 

respectively. These are further used in expression (2) to evaluate ωk for different values of wave-

vector, κ. These computed ωk values along with other physical quantities like static structure factor, 

mass, temperature, diffusion coefficient are substituted in expression (1) to evaluate dynamical 

structure factor, for six different values of wave vector, κ: 2.4 nm-1, 6.96 nm-1; 22.4 nm-1; 44.8 nm-

1; 68.8 nm-1 and 88.0 nm-1 .One may notice that the only parameter involved in the process is 

diffusion coefficient which is not an arbitrary but is a feasible parameter for a given fluid. The 

computed results for S(κ,ω) have been plotted in Figure2 for, κ= 2.4 nm-1, 6.96 nm-1; 22.4 nm-1 

with solid curve(────) along with S(κ,ω) calculated using earlier microscopic theory4, with 

dashed curve(- - - - - - ). The computed values are compared with the scale reduced experimental 

values of IXS spectra of liquid lithium10, near its melting point, with solid circles(●●●),[ keeping 

in view the unitary description of the dynamical features of liquid alkali metals11. Also, the 

variation of diffusion coefficient, D(ω), with ω for these three values of κ have been plotted in 

Figure2, with solid curve(────), dashed curve(- - - - - - )and dash dotted curve(− ∙ − ∙ −) for κ, 

2.4 nm-1, 6.96 nm-1, 22.4 nm-1 respectively. In Figure3 similar results have been plotted for κ=44.8 

nm-1; 68.8 nm-1 and 88.0 nm-1. 
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Figure2: Variation of dynamical structure factor, S(k,ω)with frequency ω for different values of k: (──) present 

calculations using modified microscopic theory, (- - - -) calculation using previous microscopic theory; (●●●) 

scale reduced experimental data. Variation of D(ω) with ω for: k=2.4 nm-1(──); k=6.96 nm-1(- - - -); k=22.4 nm-

1(− ∙ −). 
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Figure3: Variation of dynamical structure factor, S(k,ω)with frequency ω for different values of k: (──) present 

calculations using modified microscopic theory, (- - - -) calculation using previous microscopic theory; (●●●) 

scale reduced experimental data. Variation of D(ω) with ω for: k=44.8 nm-1(──); k=68.8 nm-1(- - - -); k=88.0 nm-

1(− ∙ −). 

As is evident from figure1 & figure2, computed results for S(κ,ω) are in excellent 

agreement with the corresponding experimental results( shown with solid circles) particularly at 

lower ω values, ω < 25 ps-1 for all six values of κ. However, for larger values of ω the calculated 

results deviates~15% from the corresponding scale reduced experimental values. This can also be 

noticed from the figures that modified microscopic theory yields results which are in much better 

agreement with experimental results as compared to that obtained from earlier microscopic theory. 
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One may calculate the current-current correlation function, whose peak position yield the 

collective mode frequency, ωp, using expression (5). Variation of collective mode frequencies, 

calculated from microscopic theory, with wave vector have been plotted in Figure 4 with hollow 

circles(○○○) and are compared with values deduced from experimental data (solid circles of fig.2 

& fig.3) with solid circles(●●●). Here also, the agreement between two is good. Variation of 

velocity of sound as computed from dispersion relation, ωp vs κ , have been plotted in figure4: 

triangles(ΔΔΔ) present calculation; solid triangles (▲▲▲) reduced experimental results. 

 
Figure 4:Variation of collective mode frequency, ωp with wave vector k: (○○○) present calculations using 

modified microscopic theory; (●●●) scale reduced experimental data. 

Variation of vs withk:(ΔΔΔ) present calculations using modified microscopic theory; (▲▲▲) scale 

reduced experimental data. 

4. CONCLUSION 
It may be concluded from present study that the modified microscopic theory of liquids 

successfully explains the coherent dynamics of the molten sodium metal, which is a light alkali 

metal, by using the diffusion coefficient as a parameter to obtain quantitative results. 
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