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ABSTRACT 

Aim of this paper is to investigate a new approach to solve two person zero sum game without 
saddle point. In this case the best strategies are mixed strategies and the mathematical models of a two 
person zero sum game where in decision makers have well defined set of strategies are presented. 
However, as usually happens in real practical problems, these remains some lack of precision of 
knowledge associated with the pay-off matrix. So many theoretic approaches have already been 
introduced by some authors in the game theory in recent past. The theoretical support provided by the 
use of probability approach indeed is a very useful tool to model the problem appropriately. We 
therefore use new approach to circumvent the imprecision involved in our problem. This type of 
problems solved easily by several primal-dual methods like Arithmetic method, Algebraic method, 
Matrix method, Calculus method etc. the new method proposes momentous advantages over similar 
methods. 
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INTRODUCTION 
Game theory aims to understand situations in which decision-makers interact. Games in the 

everyday sense “A competitive activity in which players contend with each other according to a set of 

rules”. In the words of a dictionary- is an example of such a situation, but the scope of the game theory 

is very much larger and a little space is derived to games in the everyday sense. The main focus is the 

use of game theory to illuminate economic, political and biological phenomena. 

Game theory is a mathematical theory that deals with the general features of competitive 

situations. The game theory deals with making optimal decisions involving two or more participants, 

with the participants themselves being treated as decision makers, is called a game. It is well known that 

the decision process in any type of multi-criteria decision making problem is crowded with several kinds 

of internal complexities such as ambiguity impression etc. Here a competitive system which possess 

both the factors, ambiguity as well as impressing, which naturally will influence the judgement of 

decision makers. 

In a competitive environment, the competing parties devise different strategies for success. 

Amongst the various possible alternatives as strategies, the best is selected for the purpose of making an 

effective decision. In a business situation two competitors are involved; the decision maker has two 

studies the move of his competitors. Therefore, a game between the two concern competitors arises as a 

result of the actions and interactions that are involved. Business firms competing with one another are of 

various categories. There are those firms that try to find the best amongst the various media of 

advertising such as radio, newspaper, T.V., etc. Also, business firms dealing with more or less similar 

products try to explore various strategies for capturing each other’s markets and there by attract 

customers. 

In other words game theory is a mathematical theory that deals with the general features of 

competitive situations. Where the mutual conflicting situation is not solved by individuals or 

organizations, game theory solves it by presenting a feasible solution. 

Some Game theoretic ideas can be traced to the 18th century, but the major development of the theory 

began in the 1920’s with the work of the mathematician Emile Borel[1] and the polymath John Von 

Neumann[2]. A decision event in the development of the theory was published in 1944 in the book 

“Theory of Games and Economic Behaviour” by Von Neumann and Oskar Morgenstern, which 

established the foundations of the field. John F. Nash[3] developed a key concept and initiated the game 

theoretic study of bargaining. Soon after Nash’s work, game theoretic model began to be used in 

economic theory and political science and psychologist began studying how human subjects behave in 

experimental games. In the 1970’s game theory was first use as a tool in evolutionary biology. 

Subsequently, game theoretic methods has come to dominate microeconomic theory and are used also in 
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many other fields of economics and wide range of other social and behaviour sciences. Nobel Prize in 

economic sciences was awarded to John C.Harsanyi[4], John F.Nash[3] and R.C. Selten[5] for their 

effective work in the field of game theory. 

The approach to competitive problem developed by John Von Neumann known as father of 

game theory, utilises the minimal principle which involve the fundamental idea of minimization of 

maximum loss or the maximum of the minimum gain. Also, several researcher (Aumann and Peleg[6], 

Dantzig[7], Dresher et al.[8], Dresher and Shapley[9], Hart and Schmeidler[10], Kohlberg[11], Kuhn[12], 

Kuhn and Tucker[13], O’Neill[14], Scarf[15] and Wolfe[16]) also contribute their work in the field of Game 

Theory. The game theory is capable of analysing very simple competitive situations; it cannot handle all 

the competitive situations that may arise. 

 
PAY-OFF MATRIX 

The pay-offs (quantitative measures in terms of gains or losses, when players select their 

particular strategies (course of action), can be represented in the form of the loss of other and vice versa. 

In other words, one player’s payoff table would contain the same amount in payoff table of other player, 

with the sign changed. Thus, it is sufficient to construct a payoff table only for one of the players. 

Player A has m strategies represented by the letters 1A , 2A , …. , mA  and player B has n strategies 

represented by the letters 1B , 2B ,…. nB . The numbers m and n need not be equal. The total number of 

possible outcomes is therefore m × n. Here, it is assumed that each player not only knows his own list of 

possible course of action but also of his opponent. For convenience, it is assumed that player A is 

always a gainer whereas player B a loser. Let ija  be the payoff that player A gains from player B. if 

player A chooses strategy i and player B chooses strategy j. then the payoff matrix is shown in the Table 
1. 

 

Table 1: Payoff matrix 

 
Player A’s strategies 

Player B’s strategies 
 

       1B                  2B         .  .   .   .   .   .   .   .   .   .     nB  

1A  11A  12A  …. … 1nA  

2A  12A  22A  … … 2nA  
. 
. 
. 

. 

. 

. 

. 

. 

. 

… 
… 
… 

… 
… 
… 

 

3A  1mA  2mA  … … 
mnA  
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By convention, the rows of the payoff matrix denote player A strategies and the column denote player B 

strategies. Since player A is assumed to always be the gainer, he therefore wishes to gain as large a 

payoff ija  as possible, player B on the other hand would do his best to reach as small as a value of ija as 

possible. Of course, the gain to player B and loss to A must be - ija . 

The strategy of a player is the pre-determined rule by which a player decides his course of action from 

his own list of courses of action during the game. There are following two types of strategies: 

(a) Pure Strategies: A pure strategies is a decision, in advance of all place, always to choose a 

particular course of action. Pure strategies may be identified by a number representing the course 

of action chosen and the game has a saddle point. 

(b)  Mixed strategies: A mixed strategy is a decision, in advance of all places, to choose a course of 

action for each play in accordance with some particular probability distribution and no saddle 

point exists in the game. 

 

MIXED STRATEGIES IN MATRIX GAMES 
Let 1 2 3(x , x , x ,....., x )mX   and 1 2 3(y , y , y ,....., y )nY   be the mixed strategies of the row player 

and the column player, respectively. Note that ija  is player 1’s payoff when the row player chooses rows 

I and column player chooses column j with probability 1. The corresponding payoff for the column 
player is ija  . The expected payoff to the row player with the above mixed strategies x and y is given 

by: 

1(x, y)u
1 1

m n

ij i j
i j

a x y
 

 xAy ; where 1 1(x ,...., x ); y (y ,...., y ) ; [a ]T
n n ijx A   ………. (1) 

The expected payoff to column player .xAy   when the row player plays x, he assures himself of an 
expected payoff 
=

2(s )
min

y
xAy


          ………. (2) 

The row player should therefore look for a mixed strategy x that maximize the above. i.e. an x such that 
=

21 (s )(s )
max min

yx
xAy


         ………. (3) 

In other words, an optimal strategy for row player is to do max minimization. Note that the row player 
chooses a mixed strategy that is best for her on the assumption that whatever she does, the column 
player will choose an action that will hurt her (row player) as much as possible. This is a direct 
consequence of rationality and the fact that the payoff for each player is the negative of the other 
player’s payoff. 
Similarly, when the column player plays y, he assures himself of a payoff 

1(s )
min

x
xAy


 

1(s )
max
x

xAy


          ………. (4) 

That is, he assures himself of losing no more than 
=

1(s )
max
x

xAy


          ………. (5) 

The column player’s optimal strategy should be to minimize loss 
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=
2 1(s ) (s )

min max
y x

xAy
 

         ………. (6) 

This is called min maximization. 
 
Nash Equilibrium:  

The Nash equilibrium concept is motivated by the idea that a theory of rational decision-making 
should not be a self-destroying prediction that creates an incentive to deviate for those who believe it. A 
strategy profile x∈Θ is Nash equilibrium if it is a best reply to itself, namely, if: (x , ) (z , x )i i i i i iu x u   
for all i = 1…n 
and all strategies iz i . If strict inequalities hold for all i iz x , then x is said to be a strict Nash 
equilibrium. 
 
Games without Saddle Point (Mixed Strategies) 
There are some games for which no saddle point exists. In such cases both the players must determine 
an optimal combination of strategies to find a saddle (equilibrium) point. The optimal strategy 
combination for each player may be determined by assigning to each strategy its probability of being 
chosen. The strategies so determined are called mixed strategies because they are probabilistic 
combination of available chooses of strategy. 
The value of game obtained by the use of mixed strategies represent least pay-off which player A can 
expect to win and the least which player B can lose. The expected pay-off to a player in a game with 
arbitrary pay-off matrix [ ija ] of order m × n is defined as 

1 1

(m, n)
k k

i ij j
i j

E m a n
 

         ………. (7) 

= TM AN (in matrix notation), 
where 1 2 3(m ,m , m ,.....,m )pM  and 1 2 3(n , n , n ,....., n )qN  denote the strategies for player A and B, 
respectively. Also 1 2 3m ,m , m ,.....,m 1p   and 1 2 3n , n , n ,....., n 1q  . Player A chooses a particular 
strategy with particular probability; this can also be interpreted as the relative frequency with which a 
strategy is chosen from the number of strategies available to a player in a particular game. 
 

Table 2: Number of strategies available to the players 
 

 Player B  

 
Player A 

 I II  
I 11p  12p  m 
II 21p  22p  1-m 

  n 1-n  
 
Two Person Zero Sum (or Rectangular) Games 
A game with only two players in which the gains of one player are the losses of another players, is 
called a two person zero sum game. In other words the games in which the algebraic sum of gains and 
losses of all the players is zero are called zero sums games. Two person, zero sum games are also called 
rectangular games because these are usually represented by a payoff matrix in rectangular form. 
Following are the basic assumptions of the two person zero sum games: 
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(a) Each player has available to him a finite number of possible courses of action. The list may not 
be same for each player. 

(b) Player A attempts to maximise gains and player B minimize losses. 
(c) The decisions are made simultaneously and also announced simultaneously so that neither player 

has an advantage resulting from direct knowledge of the other player’s decision. 
(d) Both the players know not only the possible pay-offs to themselves but also of each other. 

Various methods discussed by different authors to find value of the game under decision-making 
environment of certainty are as follows. 
 

 
Figure1: Types of methods 

 
MATHEMATICAL FORMULATION AND ANALYSIS 

In a two-person zero sum game, the resulting gain can easily be represented in the form of a 
matrix, called the payoff matrix or gain matrix. Thus, a payoff matrix is a table which shows how 
payments should be made at the end of a play or game. 

 
TWO PERSON ZERO SUM GAME IN TERMS OF MIXED STRATEGY 

If a game does not have a saddle point, the two players cannot use maximin, minimax strategies 
(pure) as their optimal strategies, then the best strategies are mixed strategies. The two players, instead 
of selecting pure strategies only, may play their plays according to predetermined set which consists of 
probabilities corresponding to each of their pure strategies. 
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Table 3: Payoff matrix of two person zero sum game 

 
(A’s payoff matrix) 

Probabilities  1y  2y  … jy  … ny  
 Pure Strategies 1 2 … j … n 
1x  1 11a  12a  … 1 ja  … 1na  

2x  2 21a  22a  … 2 ja  … 2na  
. 
. 
. 

. 

. 

. 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

ix  i 1ia  2ia  … ija  … ina  
. 
. 
. 

. 

. 

. 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

mx  m 1ma  2ma  … mja  … mna  
 
Consider a rectangular game played by two players A (maximizing player) and B, with payoff 

matrix[ ]ij m na  . Here the players A and B have m and n pure strategies respectively. 
Let 1 2 3(x , x , x ,....., x )mX  and 1 2 3(y , y , y ,....., y )nY  be the mixed strategies of the two players A and 
B, respectively where 1 2 3(x , x , x ,....., x )m and 1 2 3(y , y , y ,....., y )n are the probabilities by which A and B, 
respectively, select their pure strategies, such that 

1

1
n

i
i

X


  And 
1

1
n

j
j

y


         ………. (8) 

And 0, y 0i jx    for all i=1,2,3….,m; j=1,2,3….,n. 

Now expected gain to A is 

11 1 21 2 1 1 1
1

.... ....
m

i i m m i i
i

a x a x a x a x a x


           ………. (9) 

(if B uses strategy 1 with probability 1y ) 

12 1 22 2 2 2 2
1

.... ....
m

i i m m i i
i

a x a x a x a x a x


           ………. (10) 

(if B uses strategy 2 with probability 2y ) 
--- --- --- --- --- --- 
--- --- --- --- --- --- 

1 1 2 2
1

.... ....
m

j j ij i mj m ij i
i

a x a x a x a x a x


           ………. (11) 

(if B uses strategy j with probability jy ) 
--- --- --- --- --- --- 
--- --- --- --- --- --- 

1 1 2 2
1

.... ....
m

n n in n mn m in i
i

a x a x a x a x a x


           ………. (12) 

(if B uses strategy n with probability ny ) 
The expected gain to A (payoff function to A) is given by 
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1 1

( , )
m n

ij i j
i j

E X Y a x y
 

         ………. (13) 

By maximin-minimax criterion, A selects  
1

(x 0, 1)
m

i i i
i

x X


   which will maximize his minimum 

expected gain. i.e. A selects ix  which will 

1 2
1 1 1

max[min{ , ,...., }]
m m m

i i i i in i
i i i

a x a x a x
  
         ………. (14) 

This value is referred to as the maximin ( v


) expected value for player A. Similarly B selects 

1

(y 0, 1)
n

j j j
j

y y


    which will minimize his maximum expected loss, i.e. B selects jy which will 

1 2
1 1 1

min[max{ , ,...., }]
n n n

j j j j mj j
j j j

a y a y a y
  
         ………. (15) 

This value is referred to as the minimax ( v


) expected value for player B. 

Hence, for A the best strategy is that which maximizes 
1

min
m

ij i
i

a x

  and for B best strategy is that which 

minimizes 
1

max
n

ij j
j

a y

  . As in the case of pure strategies it can be shown that v


 v



, the fundamental 

theorem of rectangular games assumes that there always exists optimum strategies, such that v


= v


. 

Lemma: This lemma asserts that when the row player plays x, among the most effective replies y of 
the column player, there is always at least one pure strategy. Symbolically, 

2(s ) 1

max min
m

ij ijy i
xAy a x

 

          ………. (16) 

Proof: For a given j, the summation 

1

m

ij i
i

a x

           ………. (17) 

Gives the payoff to the row player when she plays 1(x ,...., x )mx   and the column player the 
Pure strategy jy . That is, 

1
( , y )

m

ij i i j
i

a x u x


          ………. (18) 

Therefore, 
1

min
m

ij ij i
a x


         ………. (19) 

Gives the minimum payoff that the row player gets when plays x and when the column player plays only 
pure strategies. Since a pure strategy is a special case of mixed strategies, we have 

2(s )1
min min

m

ij ij yi
a x xAy




         ………. (20) 

On the other hand, 

1 1

( )
n m

j ij i
j i

xAy y a x
 

           ………. (21) 

1 1

(min )
n m

j ij ijj i

r y a x
 

          ………. (22) 
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1
min

m

ij ij i
a x



   Since  
1

1
n

j
j

y


        ………. (23) 

Therefore, we have: 

2 1
1

min (s ); (s )
m

ij ij i

xAy a x y x


           ………. (24) 

2(s ) 1

min min
m

ij iy j i

xAy a x




          ………. (25) 

From (20) and (25), we have, 

2(s ) 1

min min
m

ij iy j i

xAy a x




          ………. (26) 

Similarly, it can be shown that 

1(s ) 1

max max
n

ij jx i j

xAy a y




          ………. (27) 

From the above lemma, we can describe the optimization problems of the row player and column 
players as follows. 
 
Row Player’s Optimization Problem (Max minimization) 

1

maximizemin
m

ij ij i

a x

          ………. (28) 

Subject to 

1

1 0; 1, 2,...,
m

i i
i

x x i m


            ………. (29) 

Call the above problem P1. Note that this is equivalent to 

21 (s )(s )
max min

yx
xAy


 

Column Player’s Optimization Problem (Min maximization) 

1

minimizemax
n

ij ji j

a y

         ………. (30) 

Subject to 

1

1 0; j 1,2,..., n
n

i j
j

y y


            ………. (31) 

Call the above problem P2. Note that this is equivalent to 

2 1(s ) (s )
min max

y x
xAy

 
 

We now show that the problems P1 and P2 are equivalent to appropriate linear programs. 
Proposition: The following problems are equivalent. 

Maximize 
1

min
m

ij ij i

a x

         ………. (32) 

Subject to  

1

1; 1

0;i 1, 2,..., m

m

i
i

i

x P

x




 

          ………. (33) 

Maximize z 
Subject to 
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1

z min 0; 1,2,.....,
m

ij ij i

a x j n


          ………. (34) 

1

1;LP1

0;i 1, 2,..., m

m

i
i

i

x

x




 

          ………. (35) 

Proof: Note that P1 is a maximization problem and therefore by looking at the constraints 

1

0; 1, 2,.....,
m

ij i
i

z a x j n


           ………. (36) 

Any optimal solution z∗ will satisfy the equality in the above constraint. That is, 
* *

1

m

ij i
i

z a x


  For some 1, 2,.....,j n        ………. (37) 

Let j∗ be one such value of j. Then 
* *

1

m

ij i
i

z a x


            ………. (38) 

Because z∗ is a feasible solution of LP1, we have 
* *

1 1

1, 2,....,
m m

ij i ij i
i i

a x a x j n
 

            ………. (39) 

 
This means 

* *

1 1

min
m m

ij i ij iji i

a x a x
 

           ………. (40) 

If not, we have 
*

1

; 1, 2,...,
m

ij i
i

z a x j n


           ………. (41) 

If this happens, we can find a feasible solution z


  such that *z z


 . Such a z


 is precisely the one for 

which equality will hold. But since *z  is a maximal value, the existence of *z z


  is a contradiction. 
The summary so far is: 
The row player’s optimal strategy is max minimization: 

1 2(s ) (s )
max max
x y

xAy
 

         ………. (42) 

This is equivalent to the following problem: 

Maximize 
1

min
m

ij ij i

a x

         ………. (43) 

Subject to      P1 
1; 0 i 1,2,...,mi ix x            ………. (44) 

The above is equivalent to the following LP: 
Maximize z 
Subject to      

1

0; 1, 2,.....,
m

ij i
i

z a x j n


     LP1       ………. (45) 

1; 0 i 1,2,...,mi ix x            ………. (46) 
The column player’s optimal strategy is min maximization: 

2 1(s ) (s )
min max

y x
xAy

 
         ………. (47) 
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This is equivalent to: 

1

minimizemax
n

ij ji j

a y

         ………. (48) 

Subject to       P2 
1; 0 j 1,2,..., nj jy y            ………. (49) 

The above is equivalent to the following LP: 
Minimize w 
Subject to 

1

0;i 1,2,.....,m
n

ij i
j

w a x


     LP2       ………. (50) 

1; 0 j 1,2,..., nj jy y            ………. (51) 
 
Minimax Theorem: 
This result is one of the important landmarks in the initial decades of game theory. This result was 
proved by Von Neumann in 1928 using the Brower’s fixed point theorem. Later, he and Morgenstern 
provided an elegant proof of this theorem using LP duality. The key implication of the minimax theorem 
is the existence of a mixed strategy Nash equilibrium in any matrix game. 
Theorem: For every (m × n) matrix A, there is a stochastic row vector * * *

1(x ,...., x )mx  and a stochastic 
column vector * * *

1(y ,...., y )T
ny   such that 

2 1

* *

(s ) (s )
min max

y x
x Ay xAy

 
         ………. (52) 

Proof: Given a matrix A, we have derived linear programs LP1, LP2 where LP1 represents the optimal 
Strategy of row player while LP2 represents the optimal strategy of column player. First, it is observed 
that the linear program LP2 is the dual of the linear program LP1. We now invoke 
the strong duality theorem which says: If an LP has an optimal solution, then its dual also has an 
Optimal solution; moreover the optimal value of the dual is the same as the optimal value of the original 
(primal) LP. 
To apply the strong duality theorem in the current context, we first observe that the problem P1 has an 
optimal solution by the very nature of the problem. Since LP1 is equivalent to the problem P1, the 
immediate implication is that LP1 has an optimal solution. Thus we have two LPs, LP1 and LP2 which 
are duals of each other and LP1 has an optimal solution, then by the strong duality theorem, LP2 also 
has an optimal solution and the optimal value of LP2 is the same as the optimal value of LP1. 
Let * * *

1, x ,...., xmz be an optimal solution of LP1. Then, we have 

* *

1

m

ij i
i

z a x


   For some  * 1, 2,.....,j n       ………. (53) 

By the feasibility of the optimal solution in LP1, we have 
* *

1 1

1, 2,....,
m m

ij i ij i
i i

a x a x j n
 

            ………. (54) 

This implies that 
* *

1 1

min
m m

ij i ij iji i

a x a x
 

           ………. (55) 

2

*

(s )
min

y
x Ay


    (By the lemma)       ………. (56) 

Thus 

2

* *

(s )
min

y
z x Ay


          ………. (57) 
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Similarly, let * * *
1, y ,...., ynw  be an optimal solution of LP2. Then 

* *
*

1

n

i j j
j

w a y


    For some  * 1, 2,....., mj        ………. (58) 

By the feasibility of the optimal solution in LP2, we have 
* *

*
1 1

1, 2,...., m
m n

i j j ij i
j i

a y a y j
 

           ………. (59) 

* *
*

1 1

max
n n

i j j ij jij j

a y a y
 

          ………. (60) 

1

*

(s )
max
x

xAy


   (By Lemma)        ………. (61) 

Therefore 

1

* *

(s )
max
x

w xAy


          ………. (62) 

By the strong duality theorem, the optimal values of the primal and the dual are the same and 
Therefore * *z w  This means 

2 1

* *

(s ) (s )
min max

y x
x Ay xAy

 
         ………. (63) 

This proves the minimax theorem. 
We now show that the mixed strategy profile * *(x , y ) is in fact a mixed strategy Nash equilibrium 
of the matrix game A. For this, consider 

2

* * *

(s )
min

y
x Ay x Ay


          ………. (64) 

1

*

(s )
max
x

xAy


           ………. (65) 
*

1(s )xAy x            ………. (66) 
That is, 

* * *
1(s )x Ay xAy x           ………. (67) 

 This implies 
* * *

1 1 1( , ) ( , ) (s )u x y u x y x          ………. (68) 
Further 

1

* * *

(s )
max
x

x Ay xAy


          ………. (69) 

2

*

(s )
min

x
x Ay


           ………. (70) 

*
2(s )x Ay y            ………. (71) 

That is,  
* * *

2(s )x Ay x Ay y           ………. (72) 
This implies 

* * *
2 2 2( , ) ( , ) (s )u x y u x y y          ………. (73) 

Thus * *( , )x y is a mixed strategy Nash equilibrium or a randomized saddle point. This means the 
minimax theorem guarantees the existence of a mixed strategy Nash equilibrium for any matrix game. 
 
A KEY THEOREM FOR NASH EQUILIBRIUM 
We now state and prove a key theorem for a mixed strategy profile to be Nash equilibrium in matrix 
games. 
Theorem: Given a two player zero sum game 

1 2 1 1({1, 2},s ,s , u , u )  
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a mixed strategy profile (x∗, y∗) is a Nash equilibrium if and only if 

21

*

(s )(s )
arg max min

yx
x xAy


         ………. (74) 

And 

12

*

(s )(s )
arg min max

xy
y xAy


         ………. (75) 

Furthermore 
* * * *

1 2( , ) ( , )u x y u x y          ………. (76) 

21 (s )(s )
max min

yx
xAy


         ………. (77) 

2 1(s ) (s )
min max

y x
xAy

 
         ………. (78) 

Proof: Suppose (x∗, y∗) is Nash equilibrium. Then 
* * *

1 1 1( , ) ( , ) (s )u x y u x y x    

1

* * *
1 1(s )
( , ) max ( , )

x
u x y u x y


          ………. (79) 

Also, note that 

2

*
1 1 1(s )
( , ) min ( , ) x (s )

y
u x y u x y


           

21 1

*
1 1(s )(s ) (s )

max ( , ) max{ min ( , )}
yx x

u x y u x y
 

        ………. (80) 

Since 
( ) ( ) max f(x) max g(x)x xf x g x x          ………. (81) 

From (79) and (80), we get 

21

* *
1 1(s )(s )
( , ) max{ min ( , )}

yx
u x y u x y


        ………. (82) 

On similar lines, using, * * * *
1 2( , ) ( , )u x y u x y   we can show that 

2 1

* *
1 1(s ) (s )
( , ) min {max ( , )}

y x
u x y u x y

 
        ………. (83) 

We have, * * * *
1 2( , ) ( , )u x y u x y         ………. (84) 

2

*
2(s )

{max ( , )}
y

u x y


           ………. (85) 

2

*
2(s )

min { ( , )}
y

u x y


  

2

*
1(s )

min ( , )
y

u x y


          ………. (86) 

2

* * *
1 1(s )
( , ) min ( , )

y
u x y u x y


         ………. (87) 

We know that 

2 21

*
1 1(s ) (s )(s )

max min ( , ) min ( , )
y yx

u x y u x y
 

        ………. (88) 
* *

1( , )u x y    By (82)         ………. (89) 
Similarly we know that 

2 1 1

*
1 1(s ) (s ) (s )

min max ( , ) max ( , )
y x x

u x y u x y
  

        ………. (90) 

 * *
1( , )u x y           ………. (91) 

Equation (79) and (83) imply that 

21

* *
1 1(s )(s )
( , ) max min ( , )

yx
u x y u x y


        ………. (92) 

Equation (80) and (87) imply that 

2 1

* *
1 1(s ) (s )
( , ) min max ( , )

y x
u x y u x y

 
        ………. (93) 
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From the above two expressions, we have 

21

*
1(s )(s )

arg max min ( , )
yx

x u x y


         ………. (94) 

12

*
1(s )(s )

arg min max ( , )
xy

y u x y


         ………. (95) 

It completes the proof.  It shows that (x∗, y∗) is a Nash equilibrium. 
A flow chart of using game theory approach to solve the problem is shown by the following figure-2. 
 

 
 

Figure-2: Flow chart 
 

Method of solution of 2×2 games without saddle point: 
Here we consider the 2×2 game which does not have a saddle point. So in this case the best strategies 
are the mixed strategies i.e. here we shall determine the probabilities with which each strategy should be 
selected. Suppose the game is  

 Player B 

 

Player A 

11p  12p  

21p  22p  

Table 4: 2×2 game without saddle point 
We assume the probability that player A commences with the 1st row to be ‘m’ and that for commencing 
with 2nd row to be 1-m. 
Also, we assume the probability that player B commences with the 1st row to be ‘n’ and that for 
commencing with 2nd row to be 1-n. 
If B plays the 1st column, then A gains 

11 21(1 )p m p m           ………. (96) 
If B plays the 2nd column, then A gains 

12 22 (1 )p m p m           .……… (97) 
Taking result (1) & (2) as identical, we get 

11 21 12 22(1 ) (1 )p m p m p m p m            ………. (98) 
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Solving and simplifying, we get 
22 21

11 21 22 12

( )m
( ) (p )

p p
p p p




  
        ………. (99) 

and  
11 12

11 12 22 21

( )1 m
( ) (p )

p p
p p p


 

  
       ……… (100) 

Proceeding in a similar manner, we can find the optimal strategies for B. if A plays the 1st row then the 
gain to B would be 

11 12 (1 )p n p n           ……… (101) 
If A play the 2nd roe, then gain to B would be 

21 22 (1 )p n p n           ………. (102) 
From results (101) and (102), we get 

11 12(1 )p n p n  = 21 22(1 )p n p n         ……….. (103) 
Solving and simplifying 

22 12

11 21 22 12

( )
( ) (p )

p pn
p p p




  
        ………. (104) 

and  
11 21

11 21 22 12

( )1
( ) (p )

p pn
p p p


 

  
       ………. (105) 

Now, if A plays (m, 1-m) then value of the game is 
= 11 21(1 )p m p m           ………. (106) 
Substituting the value of ‘m’ & ‘1-m’ in the above result, we get the value as 

11 22 11 21 21 11 21 12

11 12 22 21( ) (p )
p p p p p p p p

p p p
  


  

       ……… (107) 

 
 
NUMERICAL EXAMPLES 
Example-1: Solve the following game 

 Player B 

 

Player A 

 I II 

I 8 2 

II 6 10 

Solution: 
Method-I 
It may be noted that the game has no saddle point and thus the best strategy for both players are mixed 
strategies. Let player A’s strategy be (m, 1-m) and player B be (n, 1-n). Then we know that the values of 
m, n for algebraic method are follows: 
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22 21

11 21 22 12

22 12

11 21 22 12

( ) 10 6 2m
( ) (p ) (8 6) (10 2) 5

2 31 1
5 5

( ) 10 2 4
( ) (p ) (8 6) (10 2) 5

4 11 1
5 5

p p
p p p

m

p pn
p p p

n

 
  

     

   

 
  

     

   

 

The value of game by algebraic method is 
11 22 12 21

11 22 12 21

8 10 6 2 68 34
( ) 8 10 (2 6) 10 5

p p p pv
p p p p

   
   

     
    ………. (108) 

Method-II 
We have the value of m and n from above method that is 

2 4 3 1, n ,1 1
5 5 5 5

m m and n       

Now the value of game by calculus method is 

11 21 12 22(m,n) (1 ) n (1 ) (1 )(1 )E p mn p m p m n p m n         
2 4 3 4 2 1 3 1(m, n) 8 6 2 10
5 5 5 5 5 5 5 5

E              

64 72 4 30 170 34(m, n)
25 25 5

E   
         ………. (109) 

Method-III 
Find the value of game by new approach 
The probabilities can be find out by either algebraic or calculus method and then employed to find the 
value of game. 
The value of m, 1-m, n, 1-n is 

2 4 3 1, n ,1 1
5 5 5 5

m m and n       

Then the two probabilities for player A and B are 2 3( , )
5 5

 and 4 1( , )
5 5

. 

Since both players play independently and that neither knows that the other will play next. The 
probabilities for player A are independent of the probabilities for player B. 
The payoff in the game will be obtained when players play a particular column and particular row 
simultaneously. Once the probabilities for choosing a particular row and column are known. The 
probabilities of each payoff can be calculated and thereby expected value can be found (expected value= 
payoff × probability of payoff) as follow: 
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Table 5: Payoff matrix 

 
Payoff value Strategy Probability of the payoff Expected value 

8 Row-I, Column-I 
2 4 8
5 5 25
   64

25
 

2 Row-I, Column-II 
2 1 2
5 5 25
   4

25
 

6 Row-II, Column-I 
3 4 12
5 5 25
   72

25
 

10 Row-II, Column-II 
3 1 3
5 5 25
   30

25
 

 Total value 
25 1
25

  34
5

 

Thus the value of game is 34
5

. 

Which is similar as algebraic and calculus method. 
Example-2: Solve the following game 

 Player B 

 

Player A 

 I II 

I 6 9 

II 8 4 

Solution: 
Method-I 
It may be noted that the game has no saddle point and thus the best strategy for both players are mixed 
strategies. Let player A’s strategy be (m, 1-m) and player B be (n, 1-n). Then we know that the values of 
m, n for algebraic method are follows: 

22 21

11 21 22 12

22 12

11 21 22 12

( ) 4 8 4m
( ) (p ) (6 8) (4 9) 7

4 31 1
7 7

( ) 4 9 5
( ) (p ) (6 8) (4 9) 7

5 21 1
7 7

p p
p p p

m

p pn
p p p

n

 
  

     

   

 
  

     

   

 

The value of game by algebraic method is 
11 22 12 21

11 22 12 21

6 4 9 8 24 72 48
( ) 6 4 (9 8) 10 17 7

p p p pv
p p p p

    
   

      
    ………. (110) 
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Method-II 
We have the value of m and n from above method that is 

4 5 3 2,n ,1 1
7 7 7 7

m m and n       

Now the value of game by calculus method is 
11 21 12 22(m,n) (1 ) n (1 ) (1 )(1 )E p mn p m p m n p m n         

4 5 3 5 4 2 3 2(m, n) 6 8 9 4
7 7 7 7 7 7 7 7

E              

120 120 72 24 336 48(m,n)
7 7 49 7

E   
  


      ………. (111) 

Method-III 
Find the value of game by new approach 
The probabilities can be find out by either algebraic or calculus method and then employed to find the 
value of game. 
The value of m, 1-m, n, 1-n is 

4 5 3 2,n ,1 1
7 7 7 7

m m and n       

Then the two probabilities for player A and B are 4 3( , )
7 7

 and 5 2( , )
7 7

. 

Since both players play independently and that neither knows that the other will play next. The 
probabilities for player A are independent of the probabilities for player B. 
The payoff in the game will be obtained when players play a particular column and particular row 
simultaneously. Once the probabilities for choosing a particular row and column are known. The 
probabilities of each payoff can be calculated and thereby expected value can be found (expected value= 
payoff × probability of payoff) as follow: 
 

Table 6: Payoff matrix 
 
Payoff value Strategy Probability of the payoff Expected value 

6 Row-I, Column-I 
4 5 20
7 7 49
   120

49
 

9 Row-I, Column-II 
4 2 8
7 7 49
   72

49
 

8 Row-II, Column-I 
3 5 15
7 7 49
   120

49
 

4 Row-II, Column-II 
3 2 6
7 7 49
   24

49
 

 Total value 
49 1
49

  336 48
49 7

  

Thus the value of game is 48
7

. 
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Which is similar as algebraic and calculus method. 
 
Example-3: Solve the game whose payoff matrix is given below: 
 

 Player B 

 

 

Player A 

 I II III IV 

A 3 2 4 0 

B 3 4 2 4 

C 4 2 4 0 

D 0 4 0 8 

 
Solution: 
It is clear that this game has no saddle point. Therefore, we try to reduce the size of the given payoff 
matrix by dominance principles. 
From player A point of view, the first row is dominated by the third row, yielding the reduced 3×4 
payoff matrix. In the reduced matrix from player B point of view, the first column is dominated by the 
third column. Thus, by deleting the first row and then the first column, the reduced payoff matrix so 
obtained is: 
 

Table 7: Reduced payoff matrix 
 

 Player B 

 

Player A 

 II III IV 

B 4 2 4 

C 2 4 0 

D 4 0 8 

 
Now it may be noted that none of the pure strategies of player A and player B is inferior to any of their 
other strategies. However, the average of payoffs due to strategies III and IV, [(2+4)/2; (4+0)/2; (0+8)/2] 
= (3, 2, 4) is superior to the payoff due to strategy II of player B. thus, strategy II may be deleted from 
the matrix. The new matrix so obtained is 

Table 8: Payoff matrix 
 

 Player B 

 

Player A 

 III IV 

B 2 4 

C 4 0 

D 0 8 
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Again in the reduced matrix, the average of the payoffs due to strategies C and D of player A, i.e. 
[(4+0)/2;(0+8)/2]=(2,4) is the same as the payoff due to strategy Therefore, player A will gain the same 
amount even if the strategy B is never used. Hence, after deleting the strategy B from the reduced matrix 
the following new reduced 2×2 payoff is obtained 
 

Table 9: Payoff matrix 
 

 Player B 

 
Player A 

 III IV 
C 4 0 
D 0 8 

 
This game has no saddle point, so we solved this payoff matrix by algebraic, calculus and new approach 
as follows: 
Method-I 
It may be noted that the game has no saddle point and thus the best strategy for both players are mixed 
strategies. Let player A’s strategy be (m, 1-m) and player B be (n, 1-n). Then we know that the values of 
m, n for algebraic method are follows: 

22 21

11 21 22 12

22 12

11 21 22 12

( ) 8 0 8 2m
( ) (p ) (4 0) (8 0) 12 3

2 11 1
3 3

( ) 8 0 8 2
( ) (p ) (4 0) (8 0) 12 3

2 11 1
3 3

p p
p p p

m

p pn
p p p

n

 
   

     

   

 
   

     

   

 

The value of game by algebraic method is 
11 22 12 21

11 22 12 21

4 8 0 0 32 0 32 8
( ) 4 8 (0 0) 12 0 12 3

p p p pv
p p p p

    
    

      
    ………. (112) 

Method-II 
We have the value of m and n from above method that is 

2 2 1 1, n ,1 1
3 3 3 3

m m and n       

Now the value of game by calculus method is 
11 21 12 22(m,n) (1 ) n (1 ) (1 )(1 )E p mn p m p m n p m n         

2 2 1 2 2 1 1 1(m, n) 4 0 0 8
3 3 3 3 3 3 3 3

E              

16 0 0 8 24 8(m,n)
9 9 3

E   
          ………. (113) 
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Method-III 
Find the value of game by new approach 
The probabilities can be find out by either algebraic or calculus method and then employed to find the 
value of game. 
The value of m, 1-m, n, 1-n is 

2 2 1, n ,1
3 3 3

m m      and 11
3

n  . 

Then the two probabilities for player A and B are. 2 1( , )
3 3

 and 2 1( , )
3 3

. 

Since both players play independently and that neither knows that the other will play next. The 
probabilities for player A are independent of the probabilities for player B. 
The payoff in the game will be obtained when players play a particular column and particular row 
simultaneously. Once the probabilities for choosing a particular row and column are known. The 
probabilities of each payoff can be calculated and thereby expected value can be found (expected value= 
payoff × probability of payoff) as follow: 
 

Table 10: Payoff matrix 
 

Payoff value Strategy Probability of the payoff Expected value 

4 Row-I, Column-I 
2 2 4
3 3 9
   16

9
 

0 Row-I, Column-II 
2 1 2
3 3 9
   0  

0 Row-II, Column-I 
1 2 2
3 3 9
   0  

8 Row-II, Column-II 
1 1 1
3 3 9
   8

9
 

 Total value 
9 1
9
  24 8

9 3
  

Thus the value of game is 8
3

. 

Which is similar as algebraic and calculus method.  
 
CONCLUSION 
In this paper, we used a new approach to solve Two Person Zero Sum game without saddle point. 
Comparing the result for two person zero sum game without saddle point with algebraic and calculus 
method. These methods are already defined. It has been observed the value of the game is same for all 
the methods. This method is also applicable for higher order game. 
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