\
SRR
®

A. Oohacet al.,1JSRR 2019, 8(1), 708-726

Research article Available online www.ijsrr.org ISSN: 2279-0543

International Journal of Scientific Research and Reviews
Implementation of Testing Methods for VLSI Circuits

A .Ooha! and V. Leela Rani?

'M.Tech. Student, Department of Electronics and Communication Engineering, G.V.P. College of
Engineering (A), Visakhapatnam, AP-India, Email: a.00ha9@gmail.com.

2Associate professor, Department of Electronics and Communication Engineering, G.V.P college of
Engineering (A), Visakhapatnam, AP-India, Email: lee_rani@gvpce.ac.in

ABSTRACT:

An ASIC chip designed may not meet the functionality requirements. There may be lot of
conditions which may cause damage to the designed circuit and effect its functionality. Those conditions
include processing faults (such as missing contact windows, oxide breakdown), material defects (such as
cracks, crystal imperfections), packaging failures etc. These problems may cause faults in the digital
logic circuits and effects circuit functionality. Therefore, the circuit must be tested in order to know
whether it is working properly or not.

Several testing methods and algorithms have been proposed such as D-algorithm, PODEM
algorithm, Built-in-self-test etc in literature. In this paper, Built-in-logic-block-observer (BILBO)
method of testing is implemented. A test pattern compaction method, STAR-EDT is combined with
BILBO to derive minimum number of test data for detecting all faults that are injected into the circuit.
The combined method called BILBO with STAR-EDT methodology is proposed. Existing and proposed
methods are implemented and applied to various test circuits. After that, a Scheduling method is applied
to BILBO with STAR-EDT method for all test circuits at a time. The proposed method requires less
number of test patterns than the number of patterns required in existing BILBO methodology.
Scheduling concept applied to proposed method results in reduced timing requirements for test
procedures.

KEYWORDS: BILBO, STAR-EDT, Scheduling, Test data, Faults.

“Corresponding author

Ms. A. Ooha

M.Tech. student,

G.V.P. College of Engineering (A)
Visakhapatnam, AP, India.

Email: a.ooha9@gmail.com.

IJSRR, 8(1) Jan. -March, 2019 Page 710

A. Ooha et al.,IJSRR 2019, 8(1), 708-726

INTRODUCTION:

An ASIC chip designed may not meet the functionality requirements. Several testing methods
and algorithms have been proposed such as D-algorithm, PODEM algorithm, Built-in-self-test etc to
test the designs in order to define whether it is faulty or fault-free. The D-algorithm and PODEM
(Path-Oriented-Decision-Making) algorithm are external methods of test data application. Whereas,
BIST (Built-In-Self-Test) architecture is designed on-chip and the entire testing process is done on
chip. BIST is categorized into several types namely Logic BIST (LBIST), Memory BIST (MBIST),
Scan-based BIST, Programmable BIST, BILBO etc®**°%. In this paper, BILBO (Built-In-Logic-
Block-Observer) method of testing is considered. BILBO needs more number of patterns to detect
faults. A test data compression methodology STAR-EDT is used which derives minimum number of
test patterns to detect more number of faults™® Testing multiple test circuits requires more time.
Scheduling methodology is applied to test reduce the time consumption and hence, test circuits can

be tested in a parallel way.?

BILBO METHODOLOGY:

BILBO (Built-In-Logic-Block-Observer) is one of the methodologies of BIST. It uses a
register that operates in different modes based on its control inputs. The structure of BILBO register
consists of flip-flops and a combinational logic comprising of XOR, NAND and NOR gates between
every two flip-flops. Two control inputs are present in order to decide the mode of operation. The

structure of BILBO register is shown in Figure 1.

Zy Zna Zy

Bl— @4—— @¢}+— - - - - -

B2 J J J

Sl MUX g D_ DQ D_ bo
*Q -

T e e e

Clock l * (
QN QN—l

Figure 1: Architecture of BILBO register

IJSRR, 8(1) Jan. -March, 2019 Page 711

A. Ooha et al.,IJSRR 2019, 8(1), 708-726

MODES OF BILBO REGISTER:

The inputs B1 and B2 are control inputs to BILBO register which decides the modes of

operation of BILBO register.

If B1=B2=0, then BILBO register will be in RESET mode.

If B1=0, B2=1, then BILBO register will be in Scan mode.

If B1=1, B2=0, then BILBO register will be in PRPG or MISR mode.
If B1=B2=1, then BILBO register will be in Register mode.

The BILBO register in PRPG mode generates test patterns in order to give them as inputs to
the test circuit. The response of the test circuit is given to BILBO register in MISR mode as input to
generate a signature. This signature of test circuit is compared with reference signature. If both
signatures match with each other, then the circuit is said to be fault-free.

FAULTS INJECTED INTO TEST CIRCUITS:

The test circuits considered in this paper are 1-bit full-adder, 32-bit ALU, 32-bit ripple carry
adder and 32-bit magnitude comparator. In 1-bit full-adder, 2 faults (stuck-at-O and stuck-at-1) are
injected. In 32-bit ALU, 10 faults (8 s-a-1 and 2 s-a-0) are injected and in 32-bit magnitude
comparator, 7 faults (4 s-a-1 and 3 s-a-0) are injected. In 32-bit ripple carry adder, 5 faults (2 s-a-1
and 3 s-a-0) are injected during test process.

PROPOSED METHOD:
BILBO with STAR-EDT methodology is proposed in this paper. STAR-EDT is a test data

compression scheme which derives minimum number of test data that is able to detect all faults in
the test circuit. STAR-EDT consists of a ring generator that produces test patterns that are applied to
the test circuit. As BILBO register has an advantage of high fault coverage, ring generator is replaced
with BILBO register. The responses of the test circuit helps to recognize parent pattern (a pattern that
is able to detect at least one fault in the fault-list). By applying that parent pattern to a phase shifter,
children patterns can be derived, which together forms a test cluster. The derived test clusters are
again fault simulated in order to get minimum number of test clusters. The flow of proposed method

implemented is shown in Figure 2.

IJSRR, 8(1) Jan. -March, 2019 Page 712

A. Oohaet al.,1JSRR 2019, 8(1), 708-726

Response from Parent
BILBO pattern

—] Fault Phase
simulation shifter

v

Derived patterns

A 4

Fault
simulation

l

Compressed test patterns

Figure 2: Block diagram of proposed met

SCHEDULING METHODOLOGY:

Scheduling is applied to above test procedure in order to test four test circuits at a time. The
scheduling method considered in this paper consists of three sessions. In first session, ripple carry
adder and 1-bit full adder are tested. In second session, magnitude comparator and in third session,

32-bit ALU are tested respectively. The structure of scheduling methodology is shown in Figure 3.

EILBO REGISTER 1

SESSION 1 SRS SESSION3

BILBO EEGISTER 2

SESBIOIN 1

L 4 ¥ b S 4

CUT 4

Figure 3: Architecture of Scheduling methodology

RESULTS AND DISCUSSIONS:

The simulation results of above methodologies implemented on all test circuits are shown
below. The proposed method derived less number of test patterns for all test circuits compared with

number of patterns required in BILBO methodology.

BILBO METHODOLOGY:
Figure 4 presents simulation result of BILBO methodology for 1-bit full adder.In the

simulation, the signals “sig_faulty” and “sig_nofault” represents the signatures of both faulty and

IJSRR, 8(1) Jan. -March, 2019 Page 713

A. Ooha et al.,IJSRR 2019, 8(1), 708-726

fault-free test-circuits respectively. The signal “fault” compares both signatures and it is enabled if

both signatures differ with each other indicating that the circuit is faulty.

Name Value 0 00 ns 200 ns
B4 dzo o010
15 dock 1
5 bo 1
1w o
L x 0
gz o
& sumfaulty 0
L carmvfaulty 1
L& sUMnofault 0
L carmrnofault | o
B4 misr_nofault[L:0]f| 01
B misr_faultyl1:0] || 10
B sig_faultypt:0] || 10
B sig_nofaultft:0] || o1
1§ fault 1
B w 1
X1: 304,400 ns
Figure 4: Simulation result of BILBO methodology for 1-bit full adder
Console

| 15im P.40xd (signature 0x7702f090)
| This is & Full version of Iim.

| # rum 1000 ns

| Simulator is doing drcuit initialization process,
| Finished circuit initialization process.

| drcuit is faulty!

| dircuit i faulty!

| 1Sim> |

. B Consale j Compilation Log o Breakpoints ' (% Findin Files Results ' gy Search Results '
Figure 5: Console window of BILBO methodology for 1-bit full adder

Figure 6 to Figure 11 shows the simulation results of BILBO methodology for test circuits

32-bit ALU, 32-bit Ripple carry adder and 32-bit Magnitude comparator respectively.

IJSRR, 8(1) Jan. -March, 2019 Page 714

A. Ooha et al.,IJSRR 2019, 8(1), 708-726

Name Value

B a3 R | | 100 RO LR GRR s v I

1 aoc : - | |] "- _
B wata 1000110011001 110[\110[!110[0 o1t
:ﬁ‘ KELY] 1110101010101 | FUSUFUTN \'Ill'\ll]l\'lll]ll'lll'lnﬂ JIIlHHlIIll

B aw rauneta) || orttozziontiol (101...

B sio fautyBL) || oroonozaoiin _ 01001010011
B sig_nofaukBLa] || 2111100001010 ” _— 111110001101011011...

B A nofautpLo] || oretozzionniol mlm .D
DD E

[y faut 1
:§ mist_faulty3l:0] || 0100101001111) ORI

zémwsr_nofau\tﬁl:t]] 1111100011020f
—y.' %

A000000000000

X1 520,000 ns

Figure 6: Simulation result of BILBO methodology for 32-bit ALU

Cu:unsu:ule

ISlm P.40xd (signature Ox7708f050)

| This is a Full version of ISim.
| Time resolution is 1 ps
| Simulator is doing drcuit initialization process.
| Finished dircuit initialization process,
| circuit is faulty!
| drcuit is faulty!
| ISim =

Console : Compilation Log | ® Breakpoints N Find in Files Results | Egg Search Results |

Figure 7: Console window of BILBO methodology for 32-bit ALU

IJSRR, 8(1) Jan. -March, 2019 Page 715

A. Ooha et al.,IJSRR 2019, 8(1), 708-726

Value

B dg30) 0100111001010

1 dodk 1
Jy bo 1
1 b1 0
% w310 1100110011111
B 610 1001100110010

B ranofaultoutBL) || 1101110111100 110011001p1101001010011... ¥ 100010001000010 ru|11n1|:|11ru'u'u'u'u'|n ||'|11|J||11...
}5 raafaultout31:0] 1101110111100 0 '

35 misrfaulty31:0] 1011000010010 gy I -‘—

B mismofault3L0] ||101t011111111 |
B sig_fautyBLa] 1011000010010]

}5 sig_nofault[31:0] 1101101111111Y

‘Iﬂ i : ______.-

- X1: 522.747ns

Figure 8: Simulation result of BILBO methodology for 32-bit Ripple carry adder

Console

ISim P 40xd (signature 0x770Sf090)
This is a Full version of ISim.

run 1000 ns

Simulator is doing drcuit initialization process.
Finished dircuit initialization process.

circuit is faulty!

circuit is faulty!

ISim=

B Console —_| Compilation Log | @ Breakpoints | 4 Find in Files Results || Search Results |

Figure 9: Console window of BILBO methodology for 32-bit Ripple carry adder

IJSRR, 8(1) Jan. -March, 2019 Page 716

A. Ooha et al.,IJSRR 2019, 8(1), 708-726

_-

Name Value 500 ns 550 ns 600 ns 650 ns

:\E d[p3:0] 0011010101010 IJH1 1010101 n1n||11n||11n||11nu111|:|1|:|1|:|1|:|1|:|1|:|1|:|1|:|1[|111||1||1u1|u|1 _:

bt 0

s 0 ___

B wpL 0001012010101 | .l l l _%% %ﬁ%ﬁﬁq

B 10 1101100110101 [T ﬁ‘ﬁ%ﬁ -‘G—Iﬁ% %ﬁﬁ

B conprautyze) ||oso T (10 G S 'ﬁ-‘_‘ﬁw i) m-m

B compnofautzg] [|o1o : 0))) ‘ ‘ ﬁ‘ﬂn“ ' Voo Ty Y
B mist_fautyi20) 101 mmlm mm (101) T

B mist_nofauttp] ||111 0 010 l
By sig_fautty[20] 101
B signofauti20] ||111

X1 792770 s

Figure 10: Simulation result of BILBO methodology for 32-bit magnitude comparator

Console
[This is a Full version of ISim.

[# run 1000 ns
| Simulator is doing drcuit initialization process,
Finished circuit initialization process,
| circuit is faulty!
| drcuit is faulty!
| drcuit s faulty!
| drcuit is faulty!
| dreuit is faulty!
| circuit is Faulty!
| dircuit is faulty!
Sm>
B console =] Cnmpﬂatnn Lng | @ Eireakpmnm {4 Findin Files Results “§i Search Results

Figure 11: Console window of BILBO methodology for 32-bit magnitude comparator

PROPOSED METHOQOD:

Figure 12 to 19 presents the simulation results of all test circuits when BILBO with STAR-
EDT methodology is applied.In the simulation result, signals “11°, “12’, “I3” and ‘14’ represents the
derived cluster of patterns. The signal ‘numberoffaultsdetected’ indicates the number of faults

detected by that particular test cluster.

IJSRR, 8(1) Jan. -March, 2019 Page 717

A. Ooha et al.,IJSRR 2019, 8(1), 708-726

Name
B dzo
) clock
1 w
1§ «
G 2
% numberoffaultsdetected[i
[} fauttal

300 ns

1 faulta2
[ADDER SUMnofault
Ly ADDER CARRVnofault

[ADDER SUMfautty
| L, ADDER_CARR¥faulty
B finaliL:0)

¥1: 80,000 ns

Figure 12: Simulation result of proposed method for 1-bit full adder

Consale

80 The number of faults detected by this duster is: 1

86 The number of faults detected by this duster is:2

104 The number of faults detected by this duster is: 1

112 The number of faults detected by this duster is:0

120 The number of faults detected by this duster is:2

136 The number of faults detected by this duster is:0

144 The number of faults detected by this duster is:2

152 The number of faults detected by this duster is: 1

160 The number of faults detected by this duster is:0

168 The number of faults detected by this duster is:2
I 134 The numher of faults detected by this duster js-1 ST .
| @ console | j Compiltion Log | @ Breakpoints | (4 Find in Files Results | | i SearchResults

Figure 13: Console window of proposed method for 1-bit full adder

IJSRR, 8(1) Jan. -March, 2019 Page 718

A. Ooha et al.,IJSRR 2019, 8(1), 708-726

Value
0011100101010
0
0111000000000 RN
B a0 0110011011100| 0
B ALU_SELL0] 10

B A _oumefauttBt| 1201011011100
B ALU_OUTauttyB1:0]| 1101011011101
B final2BL:0] 0000000000001
1
1111000000000
1111000000000
1111000000000
1111000000000

?‘6 ALU_OUThofaultl[3]) 0101011011100
B ALU_OUTauttyl BL:f| 0101011011101
By finai3L0] 0000000000001
By numberaffaultsdetd| 10

Figure 14: Simulation result of proposed method for 32-bit ALU

Console

' TE0 TTTE NUMDEr U7 1a01E UEELED 5 7
896 The number of faults detected is 10
912 The number of faults detected is &
928 The number of faults detected iz 5
944 The number of faults detected is 5
960 The number of faults detected is 8
976 The number of faults detected is 9
992 The number of faults detected is &

| I5im>

.ﬂ_i Consale j Compilation Log o Breakpaints .-ﬂ‘i Find in Files Results 'f;|| Search Results |

Figure 15: Console window of proposed method for 32-bit ALU

IJSRR, 8(1) Jan. -March, 2019 Page 719

A. Ooha et al.,IJSRR 2019, 8(1), 708-726

Value

B dis3:0] 0011010101010
1) dock 0
B wEL 0001101100100
B «B10] 11000100010007
?,s reanofaultout[31:0] || 1100010011001

B rcafauttout31:0] 1100010001001 0 .. %0001010000... 000001100 0 0110110011... ¥1100101101... ¥D0d 0. ¥ ;
B rcafinalFio) 0000000010000 %%ﬁ

8§ numberoffaultsdeted| 5 ﬂ--- _----=-_—I_

J

B 12rcafs3:0] 00001001010014 00010 0. ¥0101011100... i 0 IJHHIIIJ1111II
] E q 00010 01110010 00010010 d

B Breale3:0] 00001001010014

?,ﬁ 4rcald3:0] 0000100101001
3’@ reafinalll[31:0] 1000000010000 0a 0 0o __ """"""""
?6 reanofaultoutl 31:0] || 0100010011001
-?é reafaultoutl [31:0] 11000100010014
l§ reafaultal 1

Figure 16: Simulation result of proposed method for 32-bit Ripple carry adder

Console

' 96 The number of faults detected by this dusteris:
104 The number of faults detected by this duster is:2
112 The number of faults detected by this duster is:3
120 The number of faults detected by this duster is: 3
128 The number of faults detected by this duster is:5
136 The number of faults detected by this duster is:5
144 The number of faults detected by this duster iz:2
152 The number of faults detected by this duster iz:2
160 The number of faults detected by this duster is:2
168 The number of faults detected by this duster is:2

lIl':'.l'l'w mrshiee of Foulbn detestod ba Hain cloankae o7

:fﬂ' Consale j Compilation Log | @ Breakpoints | (34 Find in Files Results _f-|| Search FlesuHE.

Figure 17: Console window of proposed method for 32-bit Ripple carry adder

IJSRR, 8(1) Jan. -March, 2019 Page 720

A. Ooha et al.,IJSRR 2019, 8(1), 708-726

Value

B dp30) 0100111001010 || 0100111001010101110101010101¢

} dock 0 | E . .
B wptn 11001100111114
B gL 10011001100104
*

B CoMPrctaulz] Tm Y w X w |
B covprauthza] T wm W twmw)

B fnai 20 T X w o X Xl Y]

B wezn 1101111101111 » Wlﬂﬂnﬂm
By ez SRIBRRASIGRRRI) 1010101010... X0110000000.. m 00

B BE3 10111111011110 mg‘m (1101011111... ¥0100112010... 000000000000 00..

13,14[53:0] SLESREABIGRRRIL] }(1100101010... 0101000000.. u:u:u:u _J1011111101... }{1110101011...)

—— |
B numberoftaubsdeted| D EEIR0 5 T TR SR G O

B CoMPnofauti20 —-'l‘ln'ﬁ_ E-'I—'-m'lo'ﬁ_
B compraultyl 2] S U GRS (0 ST G R G U [110 o |

‘Ig o -- _
[fauttaz _-
- X1: 160,000 ns

Figure 18: Simulation result of proposed method for 32-bit magnitude comparator

Console

112 the number of faults detected by this dusteris 2
128 the number of faults detected by this duster is 3
144 the number of faults detected by this cluster is 3
160 the number of faults detected by this duster iz &
176 the number of faults detected by this duster is 3
192 the number of faults detected by this duster is 3
208 the number of faults detected by this dusteris 3
274 the number of faults detected by this duster is 3
240 the number of fauits detected by this dusteris 3

& console j CompilationLog | @ Breakpoints '-,ﬁ Find in Files Results || Search Results

Figure 19: Console window of proposed method for 32-bit magnitude comparator

SCHEDULING METHODOLOGY:

The test procedure considered in this paper is scheduled to test different test circuits at a time.
The simulation results of scheduling methodology are presented from Figure 20 to Figure 23. The
simulation result of all sessions is shown in Figure 20. Figure 21 to Figure 23 represents the testing
process in session-1, session-2 and session-3 respectively. In the first session, 1-bit full-adder and

32-Dbit ripple carry adder are tested. In session-2, 32-bit magnitude comparator and in session-3, 32-

IJSRR, 8(1) Jan. -March, 2019 Page 721

A. Ooha et al.,IJSRR 2019, 8(1), 708-726

bit ALU are tested respectively.

Name Value 600 ns
i dock 1
B dp30] CRRSRRNak] (010011100101010111010101010101010 011100110011001100101... ¥ 00111001010101110101010101010101011100 110}
B patternz3:0] 111110101
8 raafinalBL0] 100000000 [Tonoonoonagoonooo0mooononon_ ||
B rcafinal11B1:0] 1000000001
% comfinall(z0] 010
B comfinalz[z0) 010
B alufinalL] 000000000
B alufinalzBL:0] 0000000001
B a1z 010 A R N | R
.[IQ X 0 -
B addfinal[L:0] 11
B addfinaln[1:0]

Figure 20: Simulation result of Scheduling methodology for all sessions

Figure 21: Simulation result of Scheduling methodology for session-1

IJSRR, 8(1) Jan. -March, 2019

MName Value 100 ns 200 ns
R di63:0] LIELERRRLIE) ™ | $100111000101011101010101D1010101011300110011001 10010 1010101011 |
§ ot : |'I'I'I'ITITITI'I'I||||||||||||TITIT||||||FI'ITI'IT||||||||'|T|'|'|'|T|'|'|'|'I||||||||||||TI'I'ITI'I'IT|'IT||||||||||||||'|T|'|'|'|T|'|'|'|'l||||||||||||w
-t-j pattern[s3:0] 10210011010 [REREEEEEEEEEIEEEES EEREEEE SRR EEEER R e e e C R bbb d
:5 Hreaf63:0] O01100L10L [EEEEEEEEEEEEEEEEE EELEEEE LR R R R LR 4 (FTTINE
B preaE30) 1o R N
BY Breals3:0] 01010011010
B4 Hreas3:0] 01100011010
B] reafinall131:0] || 10000000009
B dalu[2:0] 010
@ wadd o
@ radd o
1y zadd 1 “I'I.I I'II N
:“’\5 addfinal[1:0] 10 B X OO O OOOOOOOOOOO] OOOOOOOGO! X000
8§ nadd[2:0] 100 uuluuummmmmw
B madd[z:0] 0oo mwmmmw
B Badd[z0] oog WI‘ I‘I. EWW I‘I‘I. I.I‘I. lll-mﬁnium I. I‘I‘I‘WI‘ I. I‘ Iu-uuuw

X1 72,500 ns

Page 722

A. Ooha et al.,IJSRR 2019, 8(1), 708-726

Ly clock
& de30]
B pattern[s3:0]
&g alufinal31:0]
By nauezo
B 12alufp30]
B Balupz:0]
B MalufE30]
B alufinal231:0]
@ alufaultal
Uy alufaultaz
@ alufaulta3
\l@ alufaultad
@ alufaultas
Ly alufaultas
@ alufaulta?
\;; alufaultad

Value

1
0011100101010
0011001100000
0000000000000
1011001100000
0111001100000
0111001100400
0111001100000
0000000000300

(= T T I = T R R o

Name Value
_E;rzlock 3l ”””””lll
B diez0] CNIEREGIGEEGE] | 0100111004010101110101010101010101011100110011001100101010101011 ¥ 001110010
B pattemn[s3:0] 0111011001100 Hmmmmmﬂuﬂuﬂﬂiw
é comfaulta? 0 i Hﬁ-
"5 comfaultas i1]
«é comfaultad il
é comfaultas il
@ comfaultad il
"5 comfaulta7 1
B comfinal1[z0] 000 Bre@ri@ies
B 1tcoms30] 0000000000000 mm
B 2com(s3:0] 0000000000000 M
B Beom(s3:0] 0000000000000
B ucomp30] 00000000000000
B comfinalz[z0] 011

(1 | 001110010101011101010101010101010111p011001100110010

AAAARAAAAAAAMAAALAAAARAAARAARAARAARAANAAARRAARARAAARARARARARAA ST
FEEREREEE SRRt bR bRt E e e bbb b bbb et be e (i

X1: 566.987 ns

Figure 23: Simulation result of Scheduling methodology for session-3

Table 1 presents the comparison of existing methodology BILBO and proposed method
called BILBO with STAR-EDT. BILBO requires more number of test patterns to detect all faults that

IJSRR, 8(1) Jan. -March, 2019 Page 723

A. Ooha et al.,IJSRR 2019, 8(1), 708-726

are injected into the test-circuits. Whereas, BILBO with STAR-EDT derived less number of test

patterns compared to BILBO methodology to detect all faults that are injected into test-circuits.
Table 1: Comparison between BILBO and proposed methodologies

NUMBER OF NUMBER OF PATTERNS | NUMBER OF TEST PATTERNS

TEST CIRCUIT FAULTS REQUIRED IN BILBO DERIVED BY BILBO WITH

INJECTED METHODOLOGY STAR-EDT METHODOLOGY
1-BIT FULL ADDER 2 5 2
32-BIT ALU 10 6 1
32-BIT MAGNITUDE 7 5 3

COMPARATOR
32-BIT RIPPLE CARRY 3 9 1
ADDER

The proposed method derived minimum number of test pattern required to detect all faults

that are injected into the test-circuits. The number of compressed test patterns are given in Table 1.

SCHEDULING METHODOLOGY:
Table 2: Scheduling applied to proposed methodology

TIME REQUIRED TO TEST ALL
TEST-CIRCUITS SESSIONS TEST-CIRCUITS IN
SCHEDULING
32-BIT RIPPLE CARRY ADDER SESSION-1
1-BIT FULL-ADDER SESSION-1
32-BIT MAGNITUDE SESSION.2 2:213ns
COMPARATOR
32-BIT ALU SESSION-3

The scheduling methodology reduces the time required to test all test-circuits individually.
Total time required to test all circuits is 2.213 ns only with three sessions. The process of scheduling

and its sessions are given in Table 2.

CONCLUSION:

In this paper, BILBO methodology applied to four test-circuits is presented. In order to
increase the fault coverage and to compress test data, STAR-EDT methodology is applied to BILBO
method. Later, Scheduling methodology is applied in order to reduce the time required to test the
circuits independently. Existed and proposed methodologies are verified on various test-circuits. The
simulation results concludes that the proposed BILBO with STAR-EDT methodology requires

minimum number of test patterns to detect all faults that are injected into the test-circuits and

IJSRR, 8(1) Jan. -March, 2019 Page 724

A. Ooha et al.,IJSRR 2019, 8(1), 708-726

scheduling methodology applied to BILBO with STAR-EDT reduces the time consumption by

testing them parallelly.

REFERENCES:

1.

10.

GrzegorzMrugalski, JanuszRajski, Lukasz Rybak, Je drzejSolecki, and Jerzy Tyszer, “Star-
EDT: Deterministic On-Chip Scheme Using Compressed Test Patterns”, IEEE Transactions
On Computer-Aided Design of Integrated Circuits and Systems, April 2017; 36: 4.

Shaik Mohammed Waseem, Afroz Fatima, “Test Scheduling with Built in Logic Block
Observer for NoC Architecture” International Conference on Innovative Mechanisms for
Industry Applications (ICIMIA 2017).

S. Gayathri, V. SenthilKumaran, “Methodology to Detect and Diagnose Faults in Memories
using BIST”, International Journal of Advanced Research in Computer and Communication
Engineering, August, 2015; 4: 8.

Dong Xiang, Xiaoqing Wen and Laung-Terng Wang, “Low-Power Scan-Based Built-In Self-
Test Based on Weighted Pseudorandom Test Pattern Generation and Reseeding”, IEEE
transactions on Very Large Scale Integration (\VLSI) systems, March 2017; 25: 3.
Alpanasingh, Manassinghal, Vijay kumar, Priyankagupta and Pallavisexena, “BIST, Built-in-
self- testing, A test technque” MIT International Journal of Electronics and Communication
Engineering, August, 2012; 2(2) : 83-88.

Janusz Rajski, Jerzy Tyszer, Mark Kassab, and Nilanjan Mukherjee, “Embedded
Deterministic Test”, IEEE Transactions On Computer-Aided Design of Integrated Circuits
and Systems, May 2004; 23: 5.

Abdallatif S. Abu-Issa, “Energy-Efficient Scheme for Multiple Scan-Chains BIST Using
Weight-Based Segmentation”, IEEE Transactions On Circuits and Systems—II: Express
Briefs, March 2018; 65: 3.

Nandinipriya.M, Dr. (Mrs.) R.Brindha, “An Enhanced Architecture for High Performance
BIST TPG”, IEEE Sponsored 2nd International Conference on Innovations in
Information,Embedded and Communication systems (ICIIECS)2015.

G. Vamsi Krishna, G. SrinivasaRao, Y. Amar Babu, “Advanced Testing Methods for
Reversible Logic”, International Journal of Applied Engineering Research ISSN 0973-4562,
2018; 13(7): 5484-5490.

NamitaArya, AmitPrakash Singh, “Defect and Fault Detection in
combinationalCircuits: Techniques and Analysis”, IEEE, 2017; 332-337.

IJSRR, 8(1) Jan. -March, 2019 Page 725

A. Ooha et al.,1JSRR 2019, 8(1), 708-726

11. Yu Zhang, “Diagnostic Test Pattern Generation and Fault Simulation for Stuck-at and

Transition Faults”, Dissertation, August 4, 2012.

IJSRR, 8(1) Jan. -March, 2019 Page 726

