Multivalent Harmonic Function Associated With Salagean Operator

Noohi Khan (AP II)

Amity University Lucknow UP, India, Email: noohikhan2906@gmail.com

ABSTRACT

In this paper we define, a class $HM(u,v,a)$ of m-valent harmonic functions involving Salagean Operator D^m_α is defined and studied. A subclass $THM(u,v,a)$ of a class $H(u,v,a)$ is also been defined and studied. integral operator, convolution condition, for functions belonging to subclass $THM(u,v,a)$ are obtained.

KEYWORDS: Multivalalent, Salagean, convolution, operator.

*Corresponding author

Dr. Noohi Khan (AP II)

Amity University Lucknow UP

Email: noohikhan2906@gmail.com
1. INTRODUCTION

Definition 1.1

Let \(f \) be a harmonic function in a Jordan domain \(D \) with boundary \(C \). Suppose \(f \) is continuous in \(\overline{D} \) and \(f(z) \neq 0 \) on \(C \). Suppose \(f \) has no singular zeros in \(D \), and let \(m \) to be sum of the orders of the zeros of \(f \) in \(D \). Then \(\Delta_c \arg(f(z)) = 2\pi m \), where \(\Delta_c \arg(f(z)) \) denotes the change in argument of \(f(z) \) as \(z \) traverses \(C \).

It is also shown that if \(f \) is sense-preserving harmonic function near a point \(z_0 \), where \(f(z_0) = \omega_0 \) and if \(f(z) - \omega_0 \) has a zero of order \(m (m \geq 1) \) at \(z_0 \), then to each sufficiently small \(\varepsilon > 0 \) there corresponds a \(\delta > 0 \) with the property: “for each \(\alpha \in \mathbb{N}_\varepsilon(\omega_0) = \{ \omega : |\omega - \omega_0| < \delta \} \), the function \(f(z) - \alpha \) has exactly \(m \) zeros, counted according to multiplicity, in \(\mathbb{N}_\varepsilon(z_0) \)”. In particular, \(f \) has the open mapping property that is, it carries open sets to open sets.

Let \(\Delta \) be the open unit disc \(\Delta = \{ z : |z| < 1 \} \) also let \(a_k = b_k = 0 \) for \(0 \leq k < m \) and \(a_m = 1 \). Ahuja and Jahangiri\(^5\)\(^9\) introduce and studied certain subclasses of the family \(\text{SH}(m) \), \(m \geq 1 \) of all multivalent harmonic and orientation preserving functions in \(\Delta \). A function \(f \) in \(\text{SH}(m) \) can be expressed as \(f = h + \overline{g} \), where \(h \) and \(g \) are of the form

\[
1.1 \quad h(z) = z^m + \sum_{n=2}^{\infty} a_{n+m-1} z^{n+m-1} \quad \text{and} \quad g(z) = \sum_{n=1}^{\infty} b_{n+m-1} z^{n+m-1}, \quad |b_m| < 1.
\]

According to above argument, functions in \(\text{SH}(m) \) are harmonic and sense-preserving in \(\Delta \) if \(J_\tau > 0 \) in \(\Delta \). The class \(\text{SH}(1) \) of harmonic univalent functions was studied in details by Clunie and Sheil Small\(^{16}\). It was observed that \(m \)-valent mapping need not be orientation-preserving.
Let \(TH(m) \) denotes the subclass of \(SH(m) \) whose members are of the form

\[
h(z) = z^m - \sum_{n=2}^{\infty} |a_{n+m-1}| z^{n+m-1}
\]

and

\[
g(z) = \sum_{n=1}^{\infty} |b_{n+m-1}| z^{n+m-1}, \quad |b_m| < 1.
\]

Definition 1.2

For analytic function \(h(z) \in S(m) \) Salagean \(^{33}\) introduced an operator \(D^\nu_m \) defined as follows:

\[
D^0_m h(z) = h(z), \quad D^1_m h(z) = D_m (h(z)) = \frac{Z}{m} h'(z) \quad \text{and}
\]

\[
D^\nu_m h(z) = D_m (D^{\nu-1}_m h(z)) = \frac{z(D^{\nu-1}_m h(z))'}{m}
\]

\[
= z + \sum_{n=2}^{\infty} \left(\frac{n + m - 1}{m} \right)^\nu a_{n+m-1} z^{n+m-1}, \quad \nu \in \mathbb{N}.
\]

Whereas, Jahangiri et al. \(^{17}\) defined the Salagean operator \(D^\nu_m f(z) \) for multivalent harmonic function as follows:

\[
D^\nu_m f(z) = D^\nu_m h(z) + (-1)^\nu D^\nu_m g(z)
\]

where,

\[
D^\nu_m h(z) = z^m + \sum_{n=2}^{\infty} \left(\frac{n + m - 1}{m} \right)^\nu a_{n+m-1} z^{n+m-1}
\]

\[
D^\nu_m g(z) = \sum_{n=1}^{\infty} \left(\frac{n + m - 1}{m} \right)^\nu b_{n+m-1} z^{n+m-1}.
\]
Now, a sub class $H_m(\lambda, v, \alpha)$ of m-valent harmonic functions involving Salagean operator $D_m^\nu f(z)$ is defined as follows:

Definition 1.3

Let $f(z) = h(z) + \overline{g(z)}$ be the harmonic multivalent function of the form (1.1), then f belongs to $HM(u, v, a)$ if and only if

\[
\text{Re} \left\{ (1 - \lambda) \frac{D_m^\nu f(z)}{z^m} + \lambda \frac{\partial}{\partial \theta} z^m \right\} > \alpha
\]

where $0 \leq \alpha < 1, \lambda \geq 0, z = re^{i\theta} \in \Delta$ and $D_m^\nu f(z)$ is defined by (1.2) and

\[
\frac{\partial}{\partial \theta} D_m^\nu f(z) = i \left[z(D_m^\nu h(z))^* - (-1)^r z(D_m^\nu g(z))^* \right], \quad \frac{\partial}{\partial \theta} z^m = imz^m.
\]

Denote the subclass $THM(u, v, a)$ consist of harmonic functions $f_v = h + g_v$ in $HM(u, v, a)$ so that h and g_v are of the form

\[
h(z) = \sum_{n=2}^{\infty} a_n z^{n-1},
\]

\[
g_v(z) = (-1)^r \sum_{n=1}^{\infty} b_n z^{n-1}, \quad \left| b_m \right| < 1.
\]

Also note that $THM(u, v, 0) = THM(u, v)$.

The class $HM(u, v, 0)$ provides a transition between two classes:

\[
\text{Re} \left\{ \frac{D_m^\nu f(z)}{z^m} \right\} > \alpha \quad \text{and} \quad \text{Re} \left\{ \frac{\partial}{\partial \theta} \frac{D_m^\nu f(z)}{z^m} \right\} > \alpha \quad \text{as} \quad \lambda \text{ moves between 0 and 1}.
\]

Denote $HM(0, v, a)$ by $PM(v, a)$ and $HM(1, v, a)$ by $QM(v, a)$.
Definition 1.4

The generalized Bernardi-Libera-Livingston integral operator \(L_c(f(z)) \) for \(m \)-valent functions is defined by

\[
L_c(f(z)) = \frac{c + m}{z^c} \int_0^z t^{c-1}h(t)dt + \frac{c + m}{z^c} \int_0^z t^{c-1}g(t)dt, \quad c > -1.
\]

2. INTEGRAL OPERATOR

Let \(f \) belongs to \(\text{THM}(u,v,a) ; \quad \lambda \geq 1 \). Thus \(L_c(D^m f(z)) \) belongs to the class \(\text{THM}(u,v,a) \).

Proof

From the representation of \(L_c(f(z)) \) it follows that

\[
L_c(D^m f(z)) = \frac{c + m}{z^c} \int_0^z t^{c-1}D^m_h(t)dt + \frac{c + m}{z^c} \int_0^z t^{c-1}(-1)^\lambda D^m g(t)dt
\]

\[
= \frac{c + m}{z^c} \int_0^z t^{c-1} \left(t^m - \sum_{n=2}^{\infty} |a_{n+m-1}| t^{n+m-1} \right) dt
\]

\[
+ \frac{c + m}{z^c} (-1)^\lambda \int_0^z t^{c-1} \left(\sum_{n=2}^{\infty} |b_{n+m-1}| t^{n+m-1} \right) dt
\]

\[
= z^m - \sum_{n=2}^{\infty} A_{n+m-1} z^{n+m-1} + (-1)^\lambda \sum_{n=1}^{\infty} B_{n+m-1} z^{n+m-1}
\]

where, \(A_{n+m-1} = \frac{c + m}{n + m - 1 + c} |a_{n+m-1}| \), \(B_{n+m-1} = \frac{c + m}{n + m - 1 + c} |b_{n+m-1}| \)

Therefore,

\[
\sum_{n=2}^{\infty} \left(\frac{n+m-1}{m} \right)^\lambda \left[\left(\frac{n+m-1}{m} \right)^\lambda + (1-\lambda) \right] \frac{c + m}{n + m - 1 + c} |a_{n+m-1}| +
\]
\[+ \left\{ \left(\frac{n + m - 1}{m} \right) \lambda - (1 - \lambda) \right\} \frac{c + m}{n + m - 1 + c} \left| b_{n+m-1} \right| \]

\[\leq \sum_{n=2}^{\infty} \left\{ \left(\frac{n + m - 1}{m} \right)^\nu \left[\left(\frac{n + m - 1}{m} \right) \lambda + (1 - \lambda) \right] \left| a_{n+m-1} \right| \right\} \]

\[+ \left\{ \left(\frac{n + m - 1}{m} \right)^\nu \left[\left(\frac{n + m - 1}{m} \right) \lambda - (1 - \lambda) \right] \left| b_{n+m-1} \right| \right\} \]

\[\leq (1 - \alpha) - (2\lambda - 1) \left| b_m \right| \]

and so the proof is complete.

3. CONVOLUTION PROPERTY

Let \(f_v \) belongs to \(THM(u,v,a) \) and \(F_v \) belongs to \(THM(u,v,a) \); \(\lambda \geq 1 \) then the convolution

\[
(f_v \ast F_v)(z) = z^m - \sum_{n=2}^{\infty} \left| a_{n+m-1}A_{n+m-1} \right| z^{n+m-1} + \]

\[+ (-1)^\nu \sum_{n=1}^{\infty} \left| b_{n+m-1}B_{n+m-1} \right| z^{n+m-1} \in TH_m(\lambda, v, \alpha). \]

Proof

For \(F_v \) belongs to \(THM(u,v,a) \) so, \(\left| A_{n+m-1} \right| \leq 1, \left| B_{n+m-1} \right| \leq 1. \)

Consider,

\[
\sum_{n=2}^{\infty} \left[\left(\frac{n + m - 1}{m} \right)^\nu \left[\left(\frac{n + m - 1}{m} \right) \lambda + (1 - \lambda) \right] \left| a_{n+m-1}A_{n+m-1} \right| \right] + \]

\[
\sum_{n=1}^{\infty} \left[\left(\frac{n + m - 1}{m} \right)^\nu \left[\left(\frac{n + m - 1}{m} \right) \lambda - (1 - \lambda) \right] \left| b_{n+m-1} \right| \right] \]

\[\leq (1 - \alpha) - (2\lambda - 1) \left| b_m \right| \]
\[\sum_{n=1}^{\infty} \left[\frac{(n+m-1)^{\gamma} \left(\frac{n+m-1}{m} \lambda - (1-\lambda) \right) b_{n+m-1} B_{n+m-1}}{1-\alpha} \right] \]

\[\leq \sum_{n=2}^{\infty} \left[\frac{(n+m-1)^{\gamma} \left(\frac{n+m-1}{m} \lambda + (1-\lambda) \right) a_{n+m-1}}{1-\alpha} \right] + \]

\[\sum_{n=1}^{\infty} \left[\frac{(n+m-1)^{\gamma} \left(\frac{n+m-1}{m} \lambda - (1-\lambda) \right) b_{n+m-1}}{1-\alpha} \right] \]

\[\leq 1 \text{ using equation coefficient inequality.} \]

Therefore the result follows.

REFERENCES

