

Study Case

Available online www.ijsrr.org

ISSN: 2279-0543

International Journal of Scientific Research and Reviews

A Study on (1,2)*C And (1,2)*C[#] Sets

Rajkalpana M.¹

¹Assistant Professor, Sri Krishna Arts and Science College, Coimbatore, Tamil Nadu, India

Email: rajkalpana.m@gmail.com

ABSTRACT

The focus of this paper is to introduce a new class of sets namely $(1,2)^*$ C-closed set and $(1,2)^*$ C[#]- closed set in new bitopological setting. Also we investigate some of their properties.

KEYWORDS

 $(1,2)^*$ bitopology, $(1,2)^*$ b-open, $(1,2)^*$ semi open, $(1,2)^*$ pre open, $(1,2)^*$ α -open $(1,2)^*$ β -open, $(1,2)^*$ regular open, $(1,2)^*$ semi regular, $(1,2)^*$ C- set, $(1,2)^*$ C[#] - set, T_c space, T_c[#] space.

*Corresponding author

M. Rajkalpana

Department of mathematics

Sri Krishna Arts And Science College

Coimbatore – 641008

E.mail: rajkalpana.m@gmail.com

Mobile number : 9629807725

INTRODUCTION

The concept of a bitopological space (X, τ_1, τ_2) was first introduced by Kelly and the theory has been developed by different mathematician⁸. Their attention was mainly confined to the pairwise properties of the two topologies. When the research was going on towards pairwise properties in 1990 the endeavour of Lellis Thivagar brought a new idea on bitopological spaces¹⁰. In 2005 Lellis Thivagar and ravi introduced $(1,2)^*$ bitopological space¹⁰. The concept of $(1,2)^*$ b- open sets was introduced and studied by Sreeja and Janaki¹¹. The purpose of this paper is to give a new type of open and closed sets namely, $(1,2)^*$ C set, $(1,2)^*$ C[#] set. Also investigate some of its properties.

LITERATURE REVIEW

The bitopological space (X, τ_1, τ_2) was first introduced by Kelly and the theory has been developed by different mathematician⁸. Their attention was mainly confined to the pairwise properties of the two topologies. In 1990 the endeavour of Lellis Thivagar brought a new idea on bitopological spaces¹⁰. In 2005 Lellis Thivagar and ravi introduced $(1,2)^*$ bitopological space¹⁰. The concept of $(1,2)^*$ b- open sets was introduced and studied by Sreeja and Janaki¹¹. The purpose of this paper is to give a new type of open and closed sets namely, $(1,2)^*$ C set, $(1,2)^*$ C[#] set. Also investigate some of its properties.

PRELIMINARIES

Definition 1.2.1

Let (X, τ_1, τ_2) be a bitopological space. A subset A of X is said to be $(1,2)^*$ b-open if $A \subseteq (\tau_{1,2}-int(\tau_{1,2}-cl(A)))$ U $(\tau_{1,2}-cl(\tau_{1,2}-int(A)))$. It is denoted by $(1,2)^*$ bo(X).

Definition 1.2.2

A subset S of a bitopological space (X, τ_1 , τ_2) is said to be $\tau_{1,2}$ - open if S = A U B where A $\epsilon \tau_1$ and B $\epsilon \tau_2$.

Definition 1.2.3

A subset S of a bitopological space (X, τ_1 , τ_2) is said to be $\tau_{1,2}$ -closed if the complement of S is $\tau_{1,2}$ - open

Definition 1.2.4

A subset A of a bitopological space (X, τ_1 , τ_2) is called

 $(1,2)^*$ semi open if A $\subseteq \tau_{1,2} - cl(\tau_{1,2} - int (A))$

 $(1,2)^*$ pre open if A $\subseteq \tau_{1,2}$ - int $(\tau_{1,2}$ - cl (A))

 $(1,2)^* \alpha$ -open if A $\subseteq \tau_{1,2}$ - int $(\tau_{1,2}$ - cl $(\tau_{1,2}$ - int (A)))

 $(1,2)^* \beta$ -open if A $\subseteq \tau_{1,2}$ - cl $(\tau_{1,2}$ - int $(\tau_{1,2}$ - cl (A)))

 $(1,2)^*$ regular open if A= $\tau_{1,2}$ - int ($\tau_{1,2}$ - cl (A))

 $(1,2)^*$ semi regular if A is both $(1,2)^*$ semi open and $(1,2)^*$ semi closed.

 $(1,2)^*$ generalized closed if $\tau_{1,2}$ - cl (A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ - open in X.

 $(1,2)^*$ semi generalized closed if $\tau_{1,2}$ -s cl (A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ -open in X.

 $(1,2)^* \alpha$ generalized closed if $\tau_{1,2} - \alpha \operatorname{cl} (A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ - open in X.

 $(1,2)^*$ generalized α - closed if $\tau_{1,2} - \alpha \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2} - \alpha$ - open in X.

 $(1,2)^*$ generalized semi closed if $\tau_{1,2} - \text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.

Definition 1.2.6

A bitopological space (X, τ_1 , τ_2) is called

 $(1,2)^*$ semi T₀ space if for any two distinct points x, y in X there exists a $(1,2)^*$ semi open set containing one but not the other.

 $(1,2)^* T_b$ - space if every $(1,2)^*$ gs closed set is $\tau_{1,2}$ - closed

 $(1,2)^* \alpha$ - space if every $(1,2)^* \alpha$ - closed set is $\tau_{1,2}$ - closed.

 $(1,2)^* \alpha T_b$ - space if every $(1,2)^* \alpha g$ - closed set is $\tau_{1,2}$ - closed.

MAIN WORK

$(1,2)^*$ C –Closed Sets And $(1,2)^*$ C[#]- Closed Sets

Definition 2.1

A subset A of a bitopological space (X, τ_1 , τ_2) is called $(1,2)^*$ C-closed if $\tau_{1,2}$ -cl(A) \subseteq U whenever A \subseteq U and U is $(1,2)^*$ b-open in (X, τ_1 , τ_2).

The complement of a $(1,2)^*$ C-closed set is called $(1,2)^*$ C-open.

Definition 2.2

A subset A of a bitopological space (X, τ_1 , τ_2) is called $(1,2)^* C^{\#}$ - closed if $\tau_{1,2} - \alpha \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^* C$ -open in (X, τ_1 , τ_2).

The complement of a $(1,2)^* C^{\#}$ -closed set is called $(1,2)^* C^{\#}$ -open.

Theorem 2.3

- (i) Every $\tau_{1,2}$ closed set is $(1,2)^*$ C- closed.
- (ii) Every $\tau_{1,2}$ regular closed set is $(1,2)^*$ C- closed set.
- (iii) Every $\tau_{1,2}$ closed set is $(1,2)^* C^{\#}$ closed
- (iv) Every $(1,2)^* \alpha$ -closed set is $(1,2)^* C^{\#}$ closed.
- (v) Every $(1,2)^* C^{\#}$ -closed set is $(1,2)^* \alpha g$ -closed.
- (vi) Every $(1,2)^* C^{\#}$ -closed set is $(1,2)^*$ gs-closed.

Proof

(i) Suppose U is $(1,2)^*$ b-open set such that $A \subseteq U$. Since A is $\tau_{1,2}$ -closed, $\tau_{1,2}$ -

 $cl(A) \subseteq U$. Hence A is $(1,2)^*$ C-closed.

- (ii) Suppose U is $(1,2)^*$ b-open set such that $A \subseteq U$. Since A is $\tau_{1,2}$ -regular closed, $\tau_{1,2}$ -
- Cl (int(A)) = A \subseteq U. Hence A is (1,2)^{*} C- closed.
- (iii) Suppose U is $(1,2)^*$ C- open set such that A \subseteq U. Since A is $\tau_{1,2}$ closed, $\tau_{1,2}$ -
- $cl(A) = A \subseteq U$. We know that $\tau_{1,2} \alpha cl(A) \subseteq \tau_{1,2} cl(A) \subseteq U$. Thus A is $(1,2)^* C^{\#}$ closed.
- (iv) Suppose U is $(1,2)^*$ C-open set such that $A \subseteq U$. Let A be $(1,2)^*\alpha$ -closed set.

Therefore $\tau_{1,2} - \alpha \operatorname{cl}(A) = A \subseteq U$. Hence A is $(1,2)^* C^{\#}$ - closed.

- (v) Suppose U is $\tau_{1,2}$ -open set such that $A \subseteq U$. Since A is $(1,2)^* C^{\#}$ -closed set, $\tau_{1,2}$ -
- $\alpha cl(A) \subseteq U$. We know that every $\tau_{1,2}$ -open is $(1,2)^*$ C-open set. Hence A is $(1,2)^* \alpha g$ -closed.
- (vi) Suppose U is $(1,2)^* \tau_{1,2}$ -open set such that $A \subseteq U$. Let A be $(1,2)^* C^{\#}$ -closed set.

Then $\tau_{1,2} - \alpha cl(A) \subseteq U$. Since $\tau_{1,2} - scl(A) \subseteq \tau_{1,2} - \alpha cl(A) \subseteq U$. Hence A is $(1,2)^*$ gs-closed.

Remark 2.4

However the converse of the above theorem need not be true may be seen by the following examples.

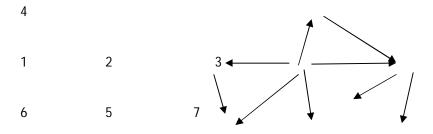
Example

 $X = \{ a, b, c \}, \tau_{1=} \{ \varphi, \{ a, b \}, X \}, \tau_{2} = \{ \varphi, \{ a, c \}, X \}, (1, 2)^{*} C^{\#} \text{- closed sets} = \{ \varphi, \{ b \}, \{ c \}, \{ b, c \}, X \}.$ Here $\{ b, c \}$ is $(1, 2)^{*} C^{\#} \text{- closed set but not } (1, 2)^{*} \alpha \text{- closed and } \tau_{1, 2} \text{- closed.}$ Because closure and alpha closure of $\{ b, c \}$ is not equal to $\{ b, c \}$.

 $X = \{ a, b, c \}, \tau_{1=} \{ \varphi, \{ a \}, X \}, \tau_{2} = \{ \varphi, \{ b \}, X \}, (1, 2)^{*} C^{\#} \text{- closed sets} = \{ \varphi, \{ c \}, \{ a, c \}, \{ b, c \}, X \}, (1, 2)^{*} \text{ gs-closed sets} = \{ \varphi, \{ a \}, \{ b \}, \{ c \}, \{ a, c \}, \{ b, c \}, X \}.$ Here $\{ b \}$ and $\{ a \}$ are $(1,2)^{*} \text{ gs-closed set but not } (1,2)^{*} C^{\#} \text{- closed set}.$

The above results as shown by the following diagram

1. $(1,2)^*$ C- closed, **2.** $\tau_{1,2}$ - closed, **3.** $(1,2)^*$ C[#]- closed, **4.** $(1,2)^*$ α -closed, **5.** $(1,2)^*$ α g-closed, **6.** $(1,2)^*$ gs-closed. **7.** $\tau_{1,2}$ - regular closed.



Remark 2.5

The union and intersection of two $(1,2)^* C^{\#}$ - closed sets need not be $(1,2)^* C^{\#}$ - closed set as shown in the following example.

Example

 $X = \{ a, b, c \}, \tau_{1=} \{ \varphi, \{ a, b \}, X \}, \tau_{2} = \{ \varphi, \{ c \}, \{ b, c \}, \{ a, c \}, X \}, (1, 2)^{*} C^{\#}\text{-closed sets} = \{ \varphi, \{ a \}, \{ b \}, \{ c \}, \{ a, b \}, X \}..\text{Here } \{ b \} \text{ and } \{ c \} \text{ are } (1, 2)^{*} C^{\#}\text{-closed set but } \{ b, c \} \text{ is not } (1, 2)^{*} C^{\#}\text{-closed set.}$

 $X = \{ a, b, c \}, \tau_{1=} \{ \varphi, \{ a \}, X \}, \tau_{2} = \{ \varphi, X \}, (1, 2)^{*} C^{\#} \text{- closed sets} = \{ \varphi, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}, X \}..\text{Here } \{a,b\} \text{ and } \{a,c\} \text{ are } (1,2)^{*} C^{\#} \text{- closed set but } \{a\} \text{ is not } (1,2)^{*} C^{\#} \text{- closed set.}$

Theorem 2.6

If a set A is $(1,2)^* C^{\#}$ -closed then $(1,2)^* \alpha cl(A)$ -A contains no nonempty $\tau_{1,2}$ -closed set.

Proof

Let F be a $\tau_{1,2}$ -closed subset of $(1,2)^* \alpha cl(A)$ -A. Therefore $A \subseteq F^C$ and $F \subseteq (1,2)^* \alpha cl(A)$. F^C is $\tau_{1,2}$ - open. Since every $\tau_{1,2}$ - open set is $(1,2)^*$ C- open, F^C is $(1,2)^*$ C-open Let A be $(1,2)^*$ C[#]closed. Then $(1,2)^* \alpha cl(A) \subseteq F^C$ whenever $A \subseteq F^C$. Thus $F \subseteq [(1,2)^* \alpha cl(A)]^C$. Thus $F \subseteq [(1,2)^* \alpha cl(A)] \cap [(1,2)^* \alpha cl(A)]^C$. Hence $F = \varphi$.

Theorem 2.7

If a set A is $(1,2)^* C^{\#}$ -closed then $(1,2)^* \alpha cl(A)$ -A contains no nonempty C-closed set.

Proof

Let F be a $(1,2)^*$ closed subset of $(1,2)^* \alpha cl(A) - A$. Therefore $F \subseteq \tau_{1,2} - \alpha cl(A) - A$ and $A \subseteq F^C$ and F^C is $(1,2)^*C$ -open. Since A is $(1,2)^*C^{\#}$ -closed set, $(1,2)^* \alpha cl(A) \subseteq F^C$ whenever $A \subseteq F^C$. This implies that $F \subseteq [(1,2)^* \alpha cl(A)]^C$. Thus $F \subseteq [(1,2)^* \alpha cl(A)] \cap [(1,2)^* \alpha cl(A)]^C$. Hence $F = \phi$.

Theorem 2.8

If A is a $(1,2)^*$ C-open and a $(1,2)^*$ C[#]-closed subset of (X, τ_1, τ_2) then A is a $(1,2)^*$ α -closed subset of (X, τ_1, τ_2) .

Proof

Let A be $(1,2)^*$ C-open and a $(1,2)^*$ C[#]-closed subset of (X, τ_1, τ_2) . Therefore $\tau_{1,2}$ - $\alpha cl(A) \subseteq A$. We know that $A \subseteq \tau_{1,2}$ - $\alpha cl(A)$. This implies that $\tau_{1,2}$ - $\alpha cl(A) = A$. Hence A is a $(1,2)^*$ α -closed subset of (X, τ_1, τ_2) .

Theorem 2.9

Let A be $(1,2)^* C^{\#}$ -closed subset of (X, τ_1, τ_2) if $A \subseteq B \subseteq (1,2)^* \alpha$ -cl(A) then B is also a $(1,2)^* C^{\#}$ -closed subset of (X, τ_1, τ_2) .

Proof

Suppose U is $(1,2)^*$ C-open such that $B \subseteq U$. Let $A \subseteq B \subseteq U$. Then $A \subseteq U$. Since A is $(1,2)^*$ C[#] - closed set, $\tau_{1,2}$ - $\alpha cl(A) \subseteq U$. But $A \subseteq B \subseteq (1,2)^* \alpha$ -cl(A). Therefore $(1,2)^* \alpha$ - $cl(A) \subseteq (1,2)^* \alpha$ -cl(B). Hence $(1,2)^* \alpha$ - $cl(B) \subseteq U$. Thus B is also a $(1,2)^* C^{\#}$ -closed subset of (X, τ_1, τ_2) .

Theorem 2.10

For each a ε X either {a} is $(1,2)^*$ C-closed or {a}^C is $(1,2)^*$ C[#]- closed.

Proof

Suppose {a} is not $(1,2)^*$ C-closed set in X Then {a}^C is not $(1,2)^*$ C-open. Therefore the only $(1,2)^*$ C-open set containing {a}^C is X and $(1,2)^* \alpha cl (\{a\}^C) \subseteq X$. Hence {a}^C is $(1,2)^* C^{\#}$ -closed set.

Theorem 2.11

Let A be $(1,2)^* C^{\#}$ - closed in X then A is $(1,2)^* \alpha$ -closed if and only if $(1,2)^* \alpha cl(A) - A$ is $\tau_{1,2}$ - closed.

Proof

Suppose A is $(1,2)^*\alpha$ -closed. Then A = $(1,2)^*\alpha$ -cl(A). Therefore $(1,2)^*\alpha$ -cl(A) – A = ϕ . Hence $(1,2)^*\alpha$ -cl(A) – A is $\tau_{1,2}$ - closed.

Conversely, Suppose $(1,2)^* \alpha cl(A) - A$ is $\tau_{1,2}$ - closed. Let A be $(1,2)^* C^{\#}$ - closed in X. By the Theorem 2.6 $(1,2)^* \alpha$ -cl(A) $-A = \phi$. Then $(1,2)^* \alpha$ -cl(A) = A. Hence A is $(1,2)^* \alpha$ -closed.

Remark 2.12

For any subset A of a bitopological space $(X, \tau_1, \tau_2) (1,2)^* \alpha - cl(A^C) = [(1,2)^* \alpha - int(A)]^C$.

Theorem 2.13

A subset A of (X, τ_1, τ_2) is $(1,2)^* C^{\#}$ -open if and only if $F \subseteq (1,2)^* \alpha$ -int(A) whenever F is $(1,2)^*C$ -closed and $F \subseteq A$.

Proof

Let $F \subseteq A$. Then $A^C \subseteq F^C$ and F^C is $(1,2)^*$ C-open. Since A^C is $(1,2)^* C^{\#}$ - closed, $(1,2)^* \alpha$ cl(A^C) $\subseteq F^C$. By using the Remark 2.12 [$(1,2)^* \alpha$ -int(A)]^C $\subseteq F^C$. Hence $F \subseteq (1,2)^* \alpha$ -int(A).

Conversely, Let $A^C \subseteq U$ where U is $(1,2)^*$ C-open. Then $U^C \subseteq A$ where U^C is $(1,2)^*$ C-closed. By hypothesis $U^C \subseteq (1,2)^* \alpha$ -int(A). Therefore $[(1,2)^* \alpha$ -int(A) $]^C \subseteq U$. By the Remark2.12 $(1,2)^* \alpha$ cl(A^C) $\subseteq U$. Hence A^C is $(1,2)^* C^{\#}$ -closed. Thus A is $(1,2)^* C^{\#}$ -open.

Theorem 2.14

If $(1,2)^* \alpha$ -int $(A) \subseteq B \subseteq A$ and A is $(1,2)^* C^{\#}$ -open then B is also $(1,2)^* C^{\#}$ -open.

Proof

Let $(1,2)^* \alpha - int(A) \subseteq B \subseteq A$. This implies that $A^C \subseteq B^C \subseteq [(1,2)^* \alpha - int(A)]^C$. By the Remark 2.12 $A^C \subseteq B^C \subseteq (1,2)^* \alpha - cl(A^C)$. Also A^C is $(1,2)^* C^{\#}$ -closed. By the Theorem 2.9 B^C is also $(1,2)^* C^{\#}$ -closed. Hence B is $(1,2)^* C^{\#}$ -open.

Remark 2.15

Every $\tau_{1,2}$ - open set is $(1,2)^*$ C[#]-open. But the converse may not be true as shown in the following example.

Example

Let $X = \{a, b, c\}, \tau_1 = \{\varphi, \{a,b\}, X\}, \tau_2 = \{\varphi, \{a,c\}, X\}, \tau_{1,2}$ -open set $= \{\varphi, \{a,b\}, \{a,c\}, X\}, (1,2)^* C^{\#}$ -open set $= \{\varphi, \{a\}, \{a,b\}, \{a,c\}, X\}$. Here $\{a\}$ is $(1,2)^* C^{\#}$ -open set but not $(1,2)^* \tau_{1,2}$ -open.

Definition 2.16

A space (X, τ_1 , τ_2) is called a (1,2)^{*}- $T_C^{\#}$ space if every (1,2)^{*} C[#] closed set in it is (1,2)^{*} α -closed.

Theorem 2.17

IJSRR, 8(1) Jan. - Mar., 2019

Every $(1,2)^* C^{\#}$ -closed set is $(1,2)^* \alpha$ -closed in $(1,2)^* T_1$ space.

Proof

Let (X, τ_1, τ_2) be $(1,2)^* T_1$ space and A be $(1,2)^* C^{\#}$ -closed set. Therefore for every $x \in A$ there exists a $\tau_{1,2}$ - open set U_x such that $x \in U_x$ and $y \notin U_x$. Then $\bigcup_{x \in A} Ux = U$ is $\tau_{1,2}$ - open. Therefore U is $(1,2)^* C$ - open also $A \subseteq U$ and $y \notin U$. Since A is $(1,2)^* C^{\#}$ -closed set, $\tau_{1,2}$ - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$. This implies that $y \notin \tau_{1,2}$ - $\alpha cl(A)$. Then $\tau_{1,2}$ - $\alpha cl(A) \subseteq A$. This implies that $A = \tau_{1,2}$ - $\alpha cl(A)$. Hence A is $(1,2)^* \alpha$ -closed.

Theorem 2.18

For a space (X, τ_1, τ_2) the following condition are Equivalent.

(i) (X, τ_1, τ_2) is a $(1,2)^* T_C^{\#}$ space.

(ii) Every singleton subset of (X, τ_1, τ_2) is either $(1,2)^*$ C-closed or $(1,2)^* \alpha$ - open.

Proof

(i) \rightarrow (ii) Let x ε X. Suppose {x} is not (1,2)* C-closed subset of (X, τ_1 , τ_2). Then X – {x} is not a (1,2)* C-open set. So X is only (1,2)* C-open set containing X – {x}. So X-{x} is a (1,2)* C[#]-closed subset of (X, τ_1 , τ_2). Let (X, τ_1 , τ_2) be (1,2)* T_C[#] space. Then X-{x} is a (1,2)* α -closed subset of (X, τ_1 , τ_2). Hence {x} is a (1,2)* α - open subset of (X, τ_1 , τ_2).

(ii) \rightarrow (i) Let A be a (1,2)^{*} C[#] -closed set of X. Trivially A \subseteq (1,2)^{*} α cl(A). Let x ϵ (1,2)^{*} α cl(A). By (ii) {x} is either (1,2)^{*} C-closed or (1,2)^{*} α - open.

Case- A

{x} is $(1,2)^*$ C-closed. If $x \notin A$, then $(1,2)^* - \alpha cl(A) - A$ contains a nonempty $(1,2)^*$ C-closed set {x}. By theorem 2.7, we arrive at a contradiction. Thus $x \in A$.

Case – B

{x} is $(1,2)^* - \alpha$ open. Since $x \in (1,2)^* - \alpha cl(A)$, {x} $\cap A \neq \phi$. This implies that $x \in A$. So $(1,2)^* - \alpha cl(A)$ $\subseteq A$. Therefore $(1,2)^* - \alpha cl(A) = A$. Then A is $(1,2)^* - \alpha closed$. Hence (X, τ_1, τ_2) is a $(1,2)^* T_C^{\#}$ space.

Theorem 2.19

Every $(1,2)^* T_b$ - space is a $(1,2)^* T_c^{\#}$ space.

Proof

Let A be a $(1,2)^* C^{\#}$ -closed set. Then by the Theorem 2.3, A is $(1,2)^*$ -gs-closed. Since (X, τ_1, τ_2) is a $(1,2)^*$ -T_b- space, A is $\tau_{1,2}$ - closed. It is true that every $\tau_{1,2}$ - closed set is $(1,2)^*$ - α -closed. Therefore X is a $(1,2)^* T_C^{\#}$ space.

Remark 2.20

IJSRR, 8(1) Jan. - Mar., 2019

The converse of above theorem need not be true may be seen in the following example.

Example

 $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}, \tau_2 = \{\phi, \{b\}, X\}, (1,2)^* C^{\#}\text{-closed sets} = \{\phi, \{c\}, \{a,c\}, \{b,c\}, X\}$. Here all $(1,2)^* C^{\#}\text{-closed sets}$ are $(1,2)^* \alpha$ -closed. Therefore X is $(1,2)^* T_C^{\#}$ space. But it is not $(1,2)^* T_b$ space because $\{b\}$ is not $\tau_{1,2}$ -closed.

Theorem 2.21

Every $(1,2)^* \alpha T_b$ - space is a $(1,2)^* T_c^{\#}$ space.

Proof

Let A be a $(1,2)^* C^{\#}$ -closed set. Then by the Theorem 2.3, A is $(1,2)^*$ - α g-closed. Since (X, τ_1, τ_2) is a $(1,2)^*$ - α T_b- space, A is $\tau_{1,2}$ - closed. It is true that every $\tau_{1,2}$ - closed set is $(1,2)^*$ - α -closed. Therefore X is a $(1,2)^* T_C^{\#}$ space.

Definition 2.22

A bitopological space (X, τ_1 , τ_2) is called a (1,2)^{*}- T_C space if every (1,2)^{*} C -closed set in it is $\tau_{1,2}$ -closed.

Theorem 2.23

Let (X, τ_1, τ_2) be a bitopological space. If a set A is $(1,2)^*$ C- closed then $\tau_{1,2}$ -cl(A) –A contains no non empty $(1,2)^*$ b-closed set.

Proof

Suppose $\tau_{1,2}$ -cl(A) –A contains $(1,2)^*$ b-closed set F. Then A \subseteq F^C. F^C is $(1,2)^*$ b-open and A is $(1,2)^*$ -C-closed. Therefore $\tau_{1,2}$ -cl(A) \subseteq F^C. Then F \subseteq $[\tau_{1,2}$ -cl(A)]^C. Hence F \subseteq $[\tau_{1,2}$ -cl(A)] \cap $[\tau_{1,2}$ -cl(A)]^C = φ . This implies that F = φ .

Theorem 2.24

For a bitopological space (X, τ_1, τ_2) the following condition are Equivalent.

(i) (X, τ_1, τ_2) is a $(1,2)^* T_C$ space.

(ii) Every singleton subset of (X, τ_1, τ_2) is either $(1,2)^*$ b-closed or $\tau_{1,2}$ - open.

Proof

(i) \rightarrow (ii) Let x ε X. Suppose {x} is not (1,2)* b-closed subset of (X, τ_1 , τ_2). Then X – {x} is not a (1,2)* b-open set. So X is only (1,2)* b-open set containing X – {x}. So X-{x} is a (1,2)* C-closed subset of (X, τ_1 , τ_2). Since (X, τ_1 , τ_2) is a (1,2)* T_C space. Then X-{x} is a $\tau_{1,2}$ -closed Hence {x} is $\tau_{1,2}$ - open.

(ii) \rightarrow (i) Let A be a (1,2)^{*} C -closed subset of X. Trivially A $\subseteq \tau_{1,2}$ -cl(A). Let x $\varepsilon \tau_{1,2}$ -cl(A). By (ii) {x} is either (1,2)^{*} b-closed or $\tau_{1,2}$ - open.

Case - A

{x} is $(1,2)^*$ b-closed. If $x \notin A$, then $\tau_{1,2}$ -cl(A) - A contains a nonempty $(1,2)^*$ b-closed set {x}. By the Theorem 2.23, we arrive at a contradiction. Thus x ε A.

Case - B

Suppose that {x} is $\tau_{1,2}$ -open. Since $x \in \tau_{1,2}$ -cl(A), {x} $\cap A \neq \phi$. This implies that $x \in A$. So $\tau_{1,2}$ -cl(A) $\subseteq A$. Therefore $\tau_{1,2}$ -cl(A) = A. Then A is $\tau_{1,2}$ -closed. Hence (X, τ_1 , τ_2) is a (1,2)^{*} T_C space.

Remark 2.25

 $(1,2)^* T_C^*$ spaces and $(1,2)^* T_C$ space are independent of one another as the following example shows.

Example

$$\begin{split} X &= \{a, b, c\}, \ \tau_1 = \{\varphi, \{a\}, X\}, \ \tau_2 = \{\ \varphi, X\ \}, \ (1,2)^* \ C \text{-closed sets} = \{\ \varphi, \{b,c\}, X\}, \ (1,2)^* \\ C^{\#}\text{-closed sets} &= \{\ \varphi, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, X\} \ . \ \text{Here all } (1,2)^* \ C \text{-closed sets are } \tau_{1,2} \text{-closed.} \\ \text{So } (X, \tau_1, \tau_2) \text{ is a } (1,2)^* \ T_C \text{ space. But not } (1,2)^* \ T_C^{\#} \text{ space. Because the set } \{a,c\} \text{ is not } \tau_{1,2} \text{ -}\alpha \\ \text{closed.} \end{split}$$

CONCLUSION

In this study we discussed about two types of sets namely $(1,2)^*$ C-sed set and $(1,2)^*$ C[#]- set in new bitopological setting and two type of spaces, $(1,2)^*$ T_C[#] spaces and $(1,2)^*$ T_C space are introduced. Also, some of their properties are investigated with some examples.

REFERENCES

- Ashiskar and P. Bhattacharyya, some weak separation axioms, Bull. cal. Math. Soc., 1963; 85: 331-336.
- 2. M.E. Abd EI-Monsef A.A.EI.Atik and M.M.EI Sharkasy, some topologies induced by bopen sets, Kyungpook Math. J. 2005; 45: 539-547.
- 3. D. Andrijevic, on b-open sets, mat vesnik, 1986; 38: 24-32.
- 4. D. Andrijevic, some properties of the topology of α sets, Math. Vesnik, 1984; 16: 1-10.
- S.P. Arya and J.M. Nour, Separation axioms for bitopological spaces, Indian J.Pure Appl. Math., 1988; 19: 42-50.

- 6. C.E. Aull and W.J>Thorn, Separation axioms between T_0 and T_1 space , Indag math, 1962; 24: 26-37
- 7. K.Balachandran, P.Sundaram and H.Maki, On Generalised continuous maps in topological spaces, Memfac.sci.kochi Univ. A.Math., 1991; 12: 5-13.
- 8. J.C.Kelly Bitopological space, Proc.London Math.soc 1963; 13 (3): 71-89.
- 9. N. Levine, Generalized closed sets in topology, Rend.circ. Math. Palerrma, 1970; 19: 89-96.
- 10. M.Lellis Thivagar, Studies on Bitopological spaces, Phd thesis Madurai kamaraj univ 1991.
- 11. Sreeja. D and Janaki. C on $(1,2)^* \pi gr$ closed sets, Internation Journal of computer application, 2012;42(5):29-34