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ABSTRACT 

This paper explained the differential equation of second order and finds the numerical 

solutions of second order differential equations with the various Techniques. In this paper discussed 

the Numeral’s method to solve the second order differential equation also some examples are solve 

for differential equation and also explained the Milne’s predictor and corrector formula. 
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INTRODUCTION 

 In physical science, many problems arise and all are expressing in the way of differential 

equation and therefore study of differential equation is a challenging field. In article we will define 

the differential equation and its various aspects. This paper contains:  

1. Basic idea of second order differential equation, 2. Numeral’s method and 3.Finite difference 

methods Equation involving independent variable ‘x’, dependent variable, ‘y’ and their 

differential coefficients such as 
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,   where y is a function of x and t variables. 

Differential equation has its own order and degree 

Order of differential equation is defined as the order of the highest derivative occurring in the 

differential equation. 

Degree of differential equation is the degree of the highest derivative when differential coefficients 

are free from radical and fraction. For example, the order of examples(i), (ii) and (iii) is one, four and 

three respectively and degree is one, one and two respectively.  

 

 

 

 

For example(i)   xSinx
dx

dy
  

(ii) t

e
dt

dx

dt

xd

dt

xd


2

2

4

4

 

(iii) 
dx

dy

dx

yd
K  1

2

2

 

Partial differential equation is that which involves partial derivatives withrespectto more than one 

independent variables. For example, 
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Ordinary differential equation 

Classification of differential equation 

 

Partial differential equation 
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 Any relation between the dependent and independent variables, when substituted in the 

differential equation, reduces it to an identity is called a solution of differential equation. Solution 

does not involve derivative of n
th

 order. This will be desired differential equation of the n
th
 order.  

MATERIALS AND METHODS: 

Second order differential equation 

Consider a second order differential equation as  
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Under the initial conditions (x)to=xoand (x′) to=x′o. This second order equation can be reduced to a 

system of simultaneous differential equations of first order as follows. 

 Take 
dt

dx
 to be y i.e. y

dt

dx
 or x′ = y    (3.1.1) 

And ],,[ tyx
dt

dx
       (3.1.2) 

Initial conditions being (x)to=xo and (y′) to=x′oit is worth noticing that an nth order differential 

equation yields n simultaneous differential equation of first order. 

Numeral’s method to solve second order differential equation 

 This method is used only when there is a second order equation without *y
(1)

 i.e. the 

differential equation is of the type  *y
(2)

 = (x, y), we shall develop the formula by using the method 

of undetermined coefficients. Let x1, x2, x3…, xk, be the equidistant values of x at the 

equispacedpoints 1, 2, 3, … k, Let 

yk-1 and ykbe known so that                k-1= (xk-1, yk-1) andk=(xk,yk) also become known. 

To integrate the differential equation, we assume a corrector type formula of the form 

yk+1 = Ayk + Byk-1 + h
2
 [Ck+1 + Dk + Ek-1] + R  (3.2.1) 

Where R denotes the error term and A, B, C, D, E are unknown coefficients to be determined. 

Let y k
 (P)
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 derivative of y at x = xk then by Taylor′s series expansion, we get 
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Again, we have  = y
(2)

 

  (1)
 = y

(3)
, (2)

 = y
(4)

, (3)
 = y

(5)
, (4)

 = y
(6)

etc. 

)(

k

)(

kk

)(

k

)(

kk-
y

!

h
y

!

h
y

!

h
yhyhh

6

6

5

54

3322

1

2

432
  

and )(

k

)(

k

)(

k

)(

k

)(

kk-
y

!

h
y

!

h
y

!

h
yhyhh

6

6

5

5

4

4

3322

1

2

432
  

 The unknown coefficients are so determined that the corrector type formula agrees with the 

Taylor′s expansion of yK+1 up to fourth order. Now substituting the values of yk+1, yk, yk-1, k+1, k, k-

1, in (3.2.1) and then comparing the coefficients of various powers of h (up to fourth power of h) on 

both sides, we get 

A + B = 1, B = -1, (B/2) + C + D + E = (1/2) 

- (B/6) + C –E = (1/6), (B/24) + (E/2) + (C/2) = (1/24) 

These give A = 2, B = -1, C = (1/12), D = (5/6), E = (1/12) 

It is worth noticing that the coefficient of fifth powers of h are also equal, of course we 

matched the terms only up to fourth power. Making these substitutions in the corrector type formula, 

we at once obtain 

yk+1 = 2yk - yk-1 + (h
2
/12) [k+1, +10k + k-1] + R   (B) 

 It is known as Numerov′s formula. 

 This formula involves an error of order six and if we assume all the terms of y
(6)

 to be equal, 

then the estimate of the error is –[h
6
yk

(6)
/240]. 

Again in (B), yK+1 appears on both sides hence this formula becomes a corrector formula. 

Thus to obtain yk+1, some previous approximation for y is necessary. 

 For this reason, ignoring the term k+1, in (B), we readily obtain 

yk+1 = 2yk - yk-1 + (h
2
/12) [10k + k-1]     (C) 

The formula of (C) can now be used as predictor formula. 
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Finite difference method 

Most of require the solution in a region R subject to various conditions on the boundary of R. 

We shall discuss two point linear boundary value problems as given below: 
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 As a matter of fact, there exist many numerical methods for solving such boundary value 

problems but the method of finite differences is most common. 

The finite difference approximations to the various derivatives are derived below. 

Let y(x) and its derivatives be single valued continuous functions of x by Taylor′s expansion, we get 
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      (3.3.2) 

 y′(x) = 1/h [y (x+h) - y(x)] – h/2 y′′ (x) – 

= 1/h [y (x+h) - y(x)] + O(h) 

This is the forward difference approximation of y′(x) with an error of order h.Similarly (3.3.2) 

gives y′(x) = 1/h [y (x) –y (x-h)] + O (h) 

This is the backward difference approximation of y′(x) with an error of order h. Now 

subtracting (3.3.2) from (3.2.1) we get 

 y′(x) = 1/2h [y (x+h) – y (x-h)] + O (h
2
) 

This is the central difference approximation of y′(x) with an error of the order h
2
. 

Clearly central difference approximation to y′(x) is better than the forward or backward 

difference approximations and hence it should be preferred. 

Then adding (3.3.1) and (3.3.2), we obtain 

y′′ (x) = 1/h
2
 [y (x+h) – 2y (x) + y (x+h)] + O (h

2
) 

This is the central difference approximation of y′′(x). Similarly, we can obtain central 

difference approximation of higher derivatives. 
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Now the working expressions for the central difference approximation of the first four 

derivatives of yi are as given below: 
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As a matter of fact, the accuracy of the method depends on the size of the sub-interval h and 

also on the order of approximation. As we reduce h, though the accuracy improves put the number of 

equations to be solved also increases. 

DISCUSSIONS AND RESULTS: 

Numerical  Examples 

Example 1: Find the differential equation of the family of curves y=e
x
(A cosx + B sinx), where A 

and B are arbitrary constants. 

Solution: Given equation 

Y = e
x
 (A Cos x + B Sin x )      (i) 

 Differentiating (i) with respect to x 

y′ = e
x
 (A Cos x + B Sin x) + e

x
 (-A Sin x + B Cos x)  

= (-A Sin x + B Cos x) e
x
 + y      (ii) 

 Differentiating (ii) with respect to x 

y′′=  (-A Cos x + B Sin x) e
x
 + e

x
 (-A Sin x + B Cos x) + y′ (iii) 

y′′=  - (A Cos x - B Sin x) e
x
 + (-A sin x + B cos x) e

x
 + y 

= (- A sin x + B cos x) e
x
 + y’ – y     (iv) 

e
x
 (-A sin x + B cosx) 

Put the values from (ii) in the equation (iv) 

y′′ = y’ = y + y′ – y 

  = 2 y′ – 2y  or   
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y′′ – 2y′ + 2y = 0 

Example 2: Show that Ax
2
 + By

2
 = 1 is the solution of  
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of dependent variable with respect to independent variable. Numerical solution of differential 

equations in second order 

Example 3:  Use Taylor′s series method to obtain the power series in t for x  and y satisfying the 

differential equations. 

(dx / dt) = x+ y + t, (d
2
y / dt

2
) = x – t 

under the initial conditions 

xt=o = 0, yt=o= 1, (dy / dt) t=o = -1 

Solution: Consider dy / dt = z, so that the given equation are dx / dt = x + y +  t, 

dz / dt = x – ′t and dy /dt = z. 

 The initial conditions become xt=o = 0, yt=o= 1 and (z) t=o = -1 

Expanding x, y, z in power series of t, we get 

 x = x0 + xo′t + (t
2 
/ 2!) x0′′ + (t

3 
/ 3!) x0′′′ + …. 

 y = y0 + yo′t + (t
2 
/ 2!) y0′′ + (t

3 
/ 3!) y0′′′ + …. 

And  z = z0 + zo′t + (t
2 
/ 2!) z0′ + (t

3 
/ 3!) z0′′′ + …. 

Now, we have x′ = x + y + t, y′ = z1 z′ = x – t 

 

(A) 
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 x′′ = x′ + y′ + 1 =  x + y + z + t + 1 

 y′′ = z′  = x – t 

 z′′ = x′ – 1  = x + 1 + t – 1 

 x′′′ = x′′ + y′′ = 2x + y + z + 1 

 y′′′ = z′′  = x + y + t –1 

 z′′′ = x′′′  = x + y + z + t + 1 etc 

when substituting xo = 0, yo =1, zo = -1 we get 

 x0′ = 1, y0′ = -1, z0′ = 0 

 x0′′ = 1, y0′′ = -0, z0′′ = 0 

 x0′′′ = 1, y0′′′ = 0,  z0′′′ = 1 etc. 

Making these substitutions in (A), we get 

x = x0 + xo′t + x0′′ (t
2 
/ 2!) + x0′′′ (t

3 
/ 3!) + …. 

= t + (t
2
/2!) + (t

3
/3!) + (t

4
/4!) + (2t

5
/5!)+… 

y = 1 – t + (t
4
/4!) + (t

5
/5!) + … 

z = -1 + (t
3
/3!) + (t

4
/4!) + (t

5
/5!) + … 

Example 4: Using Runge- Kutta method, solve y′′ = xy′
2
 – y

2
 for x = 0.2 correct to 4 decimal places. 

Initial conditions are x = 0, y = 1, y′ = 0. 

Solution: Let (dy/dx) = z = f (x, y, z) then ],,[
22

zyxyxz
dx

dz


 

But xo = 0, yo = 1, zo = 0, h = 0.2 

 Then Runge-Kutta formulae become 

K1 = hf (xo, yo, zo)     = 0.2 (0)= 0 

K2 = hf (xo+ ½ h, yo + ½ k1, zo + ½ l1)     = 0.2 (-0.1) = -0.02 

K3 = hf (xo+ ½ h, yo + ½ k2, zo + ½ l2)     = 0.2 (-0.0999) = -0.02 

K4 = hf (xo+ h, yo + k3, zo + l3)     = 0.2 (-0.1958) = -0.0392 

 K = 1/6 (k1 + 2k2 + 2k3 + k4)        = -0.0199 

l1 = h (xo, yo, zo)     = 0.2 (-1) = -0.2 

l2 = h (xo+ ½ h, yo + ½ k1, zo + ½ l1)     = 0.2 (-0.999) = -0.1998 
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l3 = h (xo+ ½ h, yo + ½ k2, zo + ½ l2)     = 0.2 (-0.9791) = -0.1958 

l4 = h (xo+ h, yo + k3, zo + l3)     = 0.2 (0.9527) = -0.1905 

 l = 1/6 (l1 + 2l2 + 2l3 + l4)        = -0.1970 

 Thus at x = 0.2, we have  y = yo + k = 1 – 0.0199 = 0.9801  

and y′ = z = zo + l = 0-0.1970  = -0.1970 

Example5: Using Numerov′s formula, solve y′′=y given that yo = 1, y′(0)=-1 

Given y′′ + xy′ + y = 0, y(0) = 1, y′(0) =0, obtain y for x = 0, (0.1), 0.3 by any method. Further, 

continue the solution by Milne′s method to calculate y (0.4). 

Solution: Putting y′ = z, the given equation reduces to:  

z′ + xz + y = 0, y′ = Z     (1) 

Now we use Taylor′s series method to find y. Differentiating the given equation n times, we have 

Yn+2 + xyn+1 + nyn + yn = 0  (yn+2)0 = - (n+1) (yn)0 

y(0) = 1, gives y2 (0)= -1, y4 (0)=3, y6(0) = - 5 x 3, …. 

And y1(0) = 0 yields y3(0) = y5(0)= … = 0 

The expanding y(x) by Taylor′s series, we get 
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xxx(x)yz(x)  = -xy   (3) 

Then from (2), we have 

Solution: Taking the interval of differentiating to be 0.5 and equal throughout, we may take x0=0, 

x1=0.5, x2=1. The corresponding values by y shall be denoted by y0, y1and y2 respectively. We are 

interested in finding out the value of y2. By putting K = 1 in (C) we get 

y2 = 2y1 – y0 + (h
2
/12) [101 + 0]     (1) 

Now yo = 1, y′o = -1, y′′o=1, y′′′o = -1, y
iv

o = 1 etc. 
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 = 1 – 0.5 + 0.125 – 0.0208 + 0.0026 – 0.0003 = .6065 

And from (1) 

y2 = 2 (.6065) – 1 + {(0.5)
2 
/ 12} {10 x .6065 + 1} = 0.3602 

 2 =  (x2, y2) = y2 = 0.3602 

Hence using (B), the first corrected value by y2 is given by 

y2 = 2y1 – y0 + (h
2
/12) [2 +101 + 0] = 2 x (.6065) – 1 + {(0.5)

2
 / 12} [.3602 + 6.065 + 1] = 

0.3677 

Again using corrector formula, we get  y2 = .2130 + {(0.5)
2 
/ 12} [.3677 + 6.065 + 1} = 0.3678 

 (y)x=1 = 0.3678 
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From (3), we also have 

z (0.1) = -0.0995, z (0.2) = - 0.196, z (0.3) = -0.2863 

Further from (1), z′(x) = -(xz+y) 

z′ (0.1) = 0.985, z′ (0.2) = -0.941, z′ (0.3) = -0.87 

Now applying Milne′s predictor formula, first to z and then to y 

We readily obtain 

z (0.4) = z (0) + 4/3 (0.1) { 2 z′ (0.1) – z′ (0.2) + 2z′ (0.3)} = 0 + (0.4/3) { -1.79 + 0.941 – 1.74} = -

0.3692 and y (0.4) = y(0) + 4/3 (0.1) { 2y′(0.1) – y(0.2) + 2y′ (0.3)} 0 + (0.4/3) {-0.199 + 0.196 – 

0.5736} [   y′=z] = 0.9231. Also z′ (0.4) = -{x(0.4) z (0.4) + y (0.4)} = - {0.4 (-0.3692) + 0.9231} = -

0.7754 

Further applying Milne′s corrector formula, we readily get 

z (0.4) = z(0.2) = h/3 {z′ (0.2) + 4 z′ (0.3) + z′ (0.4)} = -0.196 + (0.1/3) {-0.941 – 3.48 – 0.7754} = - 

0.3692 and y (0.4) = y(0.2) + h/3 {y′ (0.2) + 4y′ (0.3) + y′ (0.4)} = 0.9802 + (0.1/3) {-0.196-1.1452-

0.3692} = 0.9232 

y (0.4) = 0.9232 and z (0.4) = -0.3692 
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Example 6: Solve the equation y′′ = x+y with the boundary conditions y(0) = y(1) = 0. 

Solution: Let us divide the interval (0, 1) into four sub intervals, so that h = ¼. The pivot points are 

x0=0, x1=1/4, x2=1/2, x3=3/4 and x4=1. 

Now the differential equation is approximated as  

 1/h
2
 [yi+1 - 2yi + yi-1] = xi + yi 

 16yi+1 - 33yi + 16 yi-1 = xi , i = 1, 2, 3 (h=1/4) then using yo = y4=0, we get the system of 

equations. 

16y2 - 33y1 = ¼, 16 y3 – 33y2 + 16 y1 = ½ and –33y3 + 16y2 = ¾ 

Solving y1 = - 0.03488, y2 = -0.05632, y3 = -0.05003 

The exact solution is x
1Sinh

Sinhx
)x(y  . Now we frame the following table 

X Computed value y (x) Exact value y (x) Error 

0.25 -0.03488 -0.03505 0.00017 

0.5 -0.05632 -0.05659 0.00027 

0.75 -0.05003 -0.05028 0.00025 

Example 7: Determine values of y at the pivotal points of the interval (0, 1) if y satisfies the 

boundary value problem y
iv
 + 81y = 81 x

2
 

y (0) = y (1) = y′′ (1) = 0. (Take n=3) 

Solution:h = 1/3 and the pivotal points are xo=0, x1 = 1/3, x2 = 2/3, x3 = 1. The corresponding y 

values are yo(=0), y1, y2, y3 (=0) 

Then replacing y
iv
by its central difference approximation, the differential equation yields 

1/h
4
 (yi+2 - 4yi+1 + 6 yi – 4yi-1 + yi-2) + 81y I = 81xi

2 

 yi+2 - 4yi+1 + 7yi – 4yi-1 + yi-2 =xi
2
, i = 1, 2 

Putting i = 1, y3 – 4y2 + 7y1 – 4yo + y-1= 1/9 

Putting i = 2, y4 – 4y3 + 7y2 – 4y1 + y0 = 4/9 

Now, using yo = y3 = 0, we obtain 

-4 y2 + 7y1 + y-1 = 1/9      (1) 

y4 + 7y2 – 4y1 = 4/9       (2) 

Further, regarding the conditions y0′′ = y3′′ = 0 

We have yi′I = 1/h
2
 (yi+1 – 2yi + yi-1) 

Putting i = 0, y o ′′ = 9 (y1 – 2y0 + y-1) 
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 y-1 = -y1      [   yo = y o ′′ = 0]     (3) 

Putting i = 3, y3′′ = 9 (y4 – 2y3 + y3) 

  y4 = -y2 [    y3 = y3′′ = 0]     (4) 

Using (3), the equation (1)  - 4y2 + 6y1 = 1/9    (5) 

Using (4), equation (2)   6y2 -4y1 = 4/9     (6) 

Solving (5) and (6), we get y1 = 11/90 and y2 = 7/45 

y (1/3) = 0.1222 and y (2/3) = 0.1556 

CONCLUSIONS: 

This Article explained the differential equation of second order and how to find the numerical 

solutions of second order differential equations with the various Technique. In this paper discussed 

the Numerov’s method to solve the second order differential equation  to obtain  predictor formula 

by using the method of undetermined coefficients and for better understanding given some examples 

and also explained the Milne’s predictor and corrector formula. In Finite Difference Method as we 

reduce h, the accuracy improves. Some application and numerical results are given to demonstrate 
the high efficiency of the approach 
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