Allegory of Lateral Surface Area of A Cube With A Special Number

P.Saranya1* and G.Janaki2

Department of Mathematics, Cauvery College for women, Trichy-620018.

ABSTRACT:

We try to delineate lateral surface area of a cube with a special number using pellian equation. We have also presented some special parabolas and hyperbolas generated from the linear combination between the ranks of the considered number and edge of the cube with some remarkable recurrence relations.

KEYWORDS:
Centered cubic number, Gnomonic number, Binary quadratic equation, Pell equation, Integral solutions.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 11D09

NOTATIONS:

- $CC_n =$ Centered cubic number of rank n
- $Gno_n =$ Gnomonic number of rank n
- $CG_n = \frac{CC_n}{Gno_n}$ of rank n

*Corresponding author

P. Saranya
Assistant Professor,
Department of Mathematics,
Cauvery College for Women,
Trichy-620018.

Email: chandikajey@gmail.com Mob.- 8122434220
INTRODUCTION:

Number theory is the investigation of properties of integers. It is an immense and entrancing field of arithmetic. Analytical geometry is agitated about characterizing and depicting geometrical shapes in numerical way and gathering numerical data from shape’s definition and portrayals. Various books has been studied for enormous ideas on number theory1-5. For problem solving techniques on diophantine type of equations, research articles involving diophantine equations has been referred6-8. Papers on geometrical figures has been studied for correlation between numbers and geometrical figures9-19. Multiple papers have been examined for comparing the geometrical figures with special numbers20, 21. Recently Connections between Cylinder, Frustum of a Cone with Truncated Octahedral Number and Other Special Numbers is illustrated22.

In this paper we delineate the lateral surface area of the cube by a special number CG_n using pellian equation. We have also presented some special parabolas and hyperbolas generated from the linear combination between the ranks of the considered number and edge of the cube with some remarkable recurrence relations.

METHOD OF ANALYSIS:

This section consists of 3 cases. In each case lateral surface area of the cube is equated with CG_n of different ranks.

CASE (1):

Let the lateral surface area of the cube of side ‘p’ unit is equal to twenty eight times CG_n of rank n. The mathematical statement of our assumption is

$$4p^2 = 28CG_n$$

(1)

which reduces to

$$y^2 = 7x^2 + 21$$

(2)

where $y = 2p$ and $x = 2n - 1$

(3)

The initial solution satisfying (2) is $x_0 = 2, y_0 = 7$

Let us now find the general solution of (2).

The pellian equation corresponding to (2) is $y^2 = 7x^2 + 1$

(4)

The initial solution to (4) is $\tilde{x}_0 = 3, \tilde{y}_0 = 8$

Therefore the general solution of (4) is

$$\tilde{y}_s = \frac{1}{2} f_s, \quad \tilde{x}_s = \frac{1}{2\sqrt{7}} g_s$$

where

$$f_s = (8 + 3\sqrt{7})^s + (8 - 3\sqrt{7})^s$$
\[g_s = (8 + 3\sqrt{7})^{s+1} - (8 - 3\sqrt{7})^{s+1}, s = 0, 2, 4, \ldots \]

Now by applying Brahmagupta lemma between \((x_0, y_0)\) and \((\tilde{x}_s, \tilde{y}_s)\), we obtain the nontrivial integer solutions to (4).

\[x_{s+1} = f_s + \frac{7}{2\sqrt{7}} g_s \tag{5} \]

\[y_{s+1} = \frac{7}{2} f_s + \frac{7}{\sqrt{7}} g_s \tag{6} \]

Comparing (5) and (6) with (3) we get

\[p_{s+1} = \frac{7}{4} f_s + \frac{7}{2\sqrt{7}} g_s \tag{7} \]

\[n_{s+1} = \frac{1}{2} f_s + \frac{7}{4\sqrt{7}} g_s + \frac{1}{2} \tag{8} \]

From (7) and (8) we obtain the following recurrence relations for the ranks of \(C_{G_n}\) and sides of the cube as

\[16n_{s+2} - (n_{s+3} + n_{s+1}) = 7 \]

\[16p_{s+2} - 4(p_{s+3} + p_{s+1}) = 0 \]

Some numerical examples satisfying our assumptions are given below in table 1.

<table>
<thead>
<tr>
<th>S.No</th>
<th>(n_{s+1})</th>
<th>(p_{s+1})</th>
<th>L.H.S of (1)</th>
<th>R.H.S of (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19</td>
<td>49</td>
<td>9604</td>
<td>9604</td>
</tr>
<tr>
<td>2</td>
<td>4702</td>
<td>12439</td>
<td>618914884</td>
<td>618914884</td>
</tr>
<tr>
<td>4</td>
<td>1194163</td>
<td>3159457</td>
<td>3.992867414 \times 10^{13}</td>
<td>3.992867414 \times 10^{13}</td>
</tr>
</tbody>
</table>

OBSERVATIONS:

From the linear combination between the ranks of \(C_{G_n}\) and edge of the cube satisfying (1), we may generate different hyperbolas and parabolas. A few examples are listed below in table 2 and table 3.

<table>
<thead>
<tr>
<th>S.No</th>
<th>(x)</th>
<th>(y)</th>
<th>HYPERBOLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(37p_{s+1} - 2p_{s+2})</td>
<td>(2p_{s+2} - 28p_{s+1})</td>
<td>(4x^2 - 7y^2 = 3969)</td>
</tr>
<tr>
<td>2</td>
<td>(37p_{s+1} - 2p_{s+2})</td>
<td>(4n_{s+2} - 74n_{s+1} + 35)</td>
<td>(4x^2 - 7y^2 = 3969)</td>
</tr>
<tr>
<td>3</td>
<td>(n_{s+3} - 223n_{s+1} + 111)</td>
<td>(2p_{s+2} - 28p_{s+1})</td>
<td>(7x^2 - 64y^2 = 36288)</td>
</tr>
<tr>
<td>4</td>
<td>(2n_{s+2} - 28n_{s+1} + 13)</td>
<td>(4n_{s+2} - 74n_{s+1} + 35)</td>
<td>(7x^2 - y^2 = 567)</td>
</tr>
<tr>
<td>5</td>
<td>(37p_{s+1} - 2p_{s+2})</td>
<td>(n_{s+3} - 295n_{s+1} + 147)</td>
<td>(16x^2 - 7y^2 = 63504)</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th>S.NO</th>
<th>x</th>
<th>y</th>
<th>PARABOLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(4n_{2s+2} - 2p_{s+2} - 5)</td>
<td>(n_{s+3} - 295n_{s+1} + 147)</td>
<td>(y^2 = 1512x - 9072)</td>
</tr>
<tr>
<td>2.</td>
<td>(4n_{2s+2} - 2p_{s+2} - 5)</td>
<td>(4n_{s+2} - 74n_{s+1} + 35)</td>
<td>(2y^2 = 189x - 1134)</td>
</tr>
<tr>
<td>3.</td>
<td>(4n_{2s+2} - 2p_{s+2} - 5)</td>
<td>(2p_{s+2} - 28p_{s+1})</td>
<td>(2y^2 = 189x - 1134)</td>
</tr>
<tr>
<td>4.</td>
<td>(4n_{2s+2} - 2p_{s+2} - 5)</td>
<td>(p_{s+3} - 223p_{s+1})</td>
<td>(y^2 = 6048x - 36288)</td>
</tr>
</tbody>
</table>

CASE (2):

Let the lateral surface area of the cube of side ‘p’ unit is equal to twenty four times \(CC_{n-1}\) of rank \(n-1\). The mathematical statement of our assumption is

\[4p^2 = 24CG_{n-1}\] \hspace{1cm} (9)

This reduces to

\[y^2 = 6x^2 - 6\] \hspace{1cm} (10)

where

\[y = 2p, x = 2n - 3\] \hspace{1cm} (11)

The initial solution of (10) is \(x_0 = 5, y_0 = 12\)

The pellian equation corresponding to (10) is

\[y^2 = 6x^2 + 1\] \hspace{1cm} (12)

The initial solution to (12) is \(\tilde{x}_0 = 2, \tilde{y}_0 = 5\)

Therefore the general solution corresponding to (10) is

\[\tilde{y}_s = \frac{1}{2} f_s, \quad \tilde{x}_s = \frac{1}{2\sqrt{6}} g_s\]

where

\[f_s = (5 + 2\sqrt{6})^{s+1} + (5 - 2\sqrt{6})^{s+1}\]

\[g_s = (5 + 2\sqrt{6})^{s+1} - (5 - 2\sqrt{6})^{s+1}, s = -1,0,1,2,......\]

By applying Brahmagupta lemma between \((x_0, y_0)\) and \((\tilde{x}_s, \tilde{y}_s)\), the nontrivial integer solutions of (10) are

\[x_{s+1} = \frac{5}{2} f_s + \frac{6}{\sqrt{6}} g_s\] \hspace{1cm} (13)

\[y_{s+1} = 6f_s + \frac{15}{\sqrt{6}} g_s\] \hspace{1cm} (14)

Comparing (13) and (14) with (11) we have
\[n_{s1} = \frac{5}{4} f_s + \frac{3}{\sqrt{6}} g_s + \frac{3}{2} \]
(15)

\[p_{s1} = 3 f_s + \frac{15}{2\sqrt{6}} g_s \]
(16)

From (15) and (16), the recurrence relations for the value of rank of CG\(_{n-1}\) and sides of the cube are given by

\[10n_{s2} - (n_{s3} + n_{s1}) = 12 \]

\[10p_{s2} - (p_{s3} + p_{s1}) = 0 \]

Some numerical examples satisfying our assumption are given below in table 4.

<table>
<thead>
<tr>
<th>S.No</th>
<th>(n_{s1})</th>
<th>(p_{s1})</th>
<th>L.H.S of (9)</th>
<th>R.H.S of (9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26</td>
<td>60</td>
<td>14400</td>
<td>14400</td>
</tr>
<tr>
<td>1</td>
<td>244</td>
<td>594</td>
<td>1411344</td>
<td>1411344</td>
</tr>
<tr>
<td>2</td>
<td>2402</td>
<td>5880</td>
<td>138297600</td>
<td>138297600</td>
</tr>
<tr>
<td>3</td>
<td>23764</td>
<td>58206</td>
<td>1.355175374\times10^{10}</td>
<td>1.355175374\times10^{10}</td>
</tr>
<tr>
<td>4</td>
<td>235226</td>
<td>576180</td>
<td>1.32793357\times10^{12}</td>
<td>1.32793357\times10^{12}</td>
</tr>
<tr>
<td>5</td>
<td>2328484</td>
<td>5703594</td>
<td>1.301239381\times10^{14}</td>
<td>1.301239381\times10^{14}</td>
</tr>
</tbody>
</table>

OBSERVATIONS:

From the linear combinations between the ranks of CG\(_{n-1}\) and edge of the cube satisfying (9), different hyperbolas and parabolas may be generated. Some examples are listed below in table 5 and table 6.

<table>
<thead>
<tr>
<th>S.NO</th>
<th>(x)</th>
<th>(y)</th>
<th>HYPERBOLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20n_{s1} - p_{s1} - 30</td>
<td>24n_{s1} - 10p_{s1} - 36</td>
<td>3x^2 - 2y^2 = 12</td>
</tr>
<tr>
<td>2</td>
<td>4n_{s2} - 16p_{s1} - 6</td>
<td>12n_{s1} + 5p_{s3} - 50p_{s2} - 18</td>
<td>3x^2 - 8y^2 = 12</td>
</tr>
<tr>
<td>3</td>
<td>99n_{s1} - n_{s3} - 147</td>
<td>99p_{s1} - p_{s3}</td>
<td>6x^2 - y^2 = 150</td>
</tr>
<tr>
<td>4</td>
<td>20n_{s1} - 2n_{s2} - 27</td>
<td>p_{s2} - 10p_{s1}</td>
<td>3x^2 - 2y^2 = 3</td>
</tr>
<tr>
<td>5</td>
<td>4n_{s2} - 16p_{s1} - 6</td>
<td>99p_{s1} - p_{s3}</td>
<td>7x^2 - 2y^2 = 300</td>
</tr>
<tr>
<td>6</td>
<td>20n_{s1} - 2n_{s2} - 27</td>
<td>24n_{s1} - 10p_{s1} - 36</td>
<td>6x^2 - y^2 = 6</td>
</tr>
</tbody>
</table>
Table 6

<table>
<thead>
<tr>
<th>S.NO</th>
<th>x</th>
<th>y</th>
<th>PARABOLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$20n_{2s+2} - 8p_{2s+2} - 28$</td>
<td>$24n_{s+1} - 10p_{s+1} - 36$</td>
<td>$2y^2 = 3x - 12$</td>
</tr>
<tr>
<td>2.</td>
<td>$20n_{2s+2} - 8p_{2s+2} - 28$</td>
<td>$12n_{s+1} + 5p_{s+3} - 50p_{s+2} - 18$</td>
<td>$8y^2 = 3x - 12$</td>
</tr>
<tr>
<td>3.</td>
<td>$20n_{2s+2} - 8p_{2s+2} - 28$</td>
<td>$99p_{s+1} - p_{s+3}$</td>
<td>$2y^2 = 75x - 300$</td>
</tr>
<tr>
<td>4.</td>
<td>$20n_{2s+2} - 8p_{2s+2} - 28$</td>
<td>$p_{s+2} - 10p_{s+1}$</td>
<td>$8y^2 = 3x - 12$</td>
</tr>
<tr>
<td>5.</td>
<td>$20n_{2s+2} - 8p_{2s+2} - 28$</td>
<td>$24n_{s+1} - p_{s+2} - 36$</td>
<td>$8y^2 = 3x - 12$</td>
</tr>
</tbody>
</table>

CASE (3):

Let the lateral surface area of the cube of sides ‘p’ unit be equal to twelve times of CG$_{n-2}$ of rank n-2. The mathematical statement of our assumption is

$$4p^2 = 12CG_{n-2}$$

(17)

which reduces to

$$y^2 = 3x^2 + 9$$

(18)

where

$$y = 2p, \ x = 2n - 5$$

(19)

The initial solution of (18) is $x_0 = 3, \ y_0 = 6$

The pellian equation corresponding to (18) is

$$y^2 = 3x^2 + 1$$

(20)

The initial solution to (20) is $\bar{x}_0 = 1, \ \bar{y}_0 = 7$

Therefore the general solution to (20) are given by

$$\bar{y}_s = \frac{1}{2} f_s, \ \bar{x}_s = \frac{1}{2\sqrt{3}} g_s$$

where

$$f_s = (2 + \sqrt{3})^{s+1} - (2 - \sqrt{3})^{s+1}$$

$$g_s = (2 + \sqrt{3})^{s+1} - (2 - \sqrt{3})^{s+1}, s = 1, 1.5, 2.5, \ldots$$

By applying Brahmagupta lemma between (x_0, y_0) and (\bar{x}_s, \bar{y}_s) nontrivial integer solutions of (18) are given by,

$$x_{s+1} = \frac{3}{2} f_s + \frac{3}{2\sqrt{3}} g_s$$

(21)

$$y_{s+1} = 3f_s + \frac{9}{2\sqrt{3}} g_s$$

(22)

Comparing (21) and (22) with (19) we have

$$p_{s+1} = \frac{3}{2} f_s + \frac{9}{4\sqrt{3}} g_s$$
\[n_{s+1} = \frac{3}{4} f_s + \frac{3}{2\sqrt{3}} g_s + \frac{5}{2} \]

Some numerical examples satisfying (17) are listed below in table 7

<table>
<thead>
<tr>
<th>S</th>
<th>(n_{s+1})</th>
<th>(p_{s+1})</th>
<th>L.H.S Of (1)</th>
<th>R.H.S Of (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>4</td>
<td>3</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>39</td>
<td>6084</td>
<td>6084</td>
</tr>
<tr>
<td>3</td>
<td>316</td>
<td>543</td>
<td>1179396</td>
<td>1179396</td>
</tr>
<tr>
<td>5</td>
<td>4369</td>
<td>7568</td>
<td>228795876</td>
<td>228795876</td>
</tr>
</tbody>
</table>

OBSERVATIONS:

From the linear combination between the rank of \(CG_{n-2} \) and edge of the cube satisfying (17), different hyperbolas and parabolas may be generated. Some numerical examples are listed below in table 8 and table 9.

<table>
<thead>
<tr>
<th>S.No</th>
<th>(x)</th>
<th>(y)</th>
<th>HYPERBOLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60 (p_{s+2}) - 4 (p_{s+3})</td>
<td>8 (p_{s+2}) - 28 (p_{s+1})</td>
<td>(3x^2 - 16y^2 = 1728)</td>
</tr>
<tr>
<td>2</td>
<td>(p_{s+2}) - 3 (p_{s+3})</td>
<td>3 (p_{s+3}) - 39 (p_{s+1})</td>
<td>(108x^2 - y^2 = 243)</td>
</tr>
<tr>
<td>3</td>
<td>4 (n_{s+2}) - 14 (n_{s+1}) + 25</td>
<td>4 (n_{s+2}) - 16 (n_{s+1}) + 30</td>
<td>(4x^2 - 3y^2 = 36)</td>
</tr>
<tr>
<td>4</td>
<td>3 (n_{s+1}) - (n_{s+3}) - 75</td>
<td>15 (n_{s+1}) - (n_{s+3}) - 35</td>
<td>(4x^2 - 3y^2 = 2304)</td>
</tr>
<tr>
<td>5</td>
<td>4 (p_{s+3}) - 15 (p_{s+2})</td>
<td>21 (p_{s+3}) - 78 (p_{s+2})</td>
<td>(432x^2 - 16y^2 = 972)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S.No</th>
<th>(x)</th>
<th>(y)</th>
<th>PARABOLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 (p_{s+2}) - 6 (n_{s+3}) + 18</td>
<td>4 (n_{s+2}) - 16 (n_{s+1}) + 30</td>
<td>(y^2 = 2x - 12)</td>
</tr>
<tr>
<td>2</td>
<td>4 (p_{s+2}) - 6 (n_{s+3}) + 18</td>
<td>15 (n_{s+1}) - (n_{s+3}) - 35</td>
<td>(y^2 = 128x - 768)</td>
</tr>
<tr>
<td>3</td>
<td>4 (p_{s+2}) - 6 (n_{s+3}) + 18</td>
<td>21 (p_{s+3}) - 78 (p_{s+2})</td>
<td>(16y^2 = 162x - 972)</td>
</tr>
<tr>
<td>4</td>
<td>4 (p_{s+2}) - 6 (n_{s+3}) + 18</td>
<td>8 (p_{s+2}) - 28 (p_{s+1})</td>
<td>(y^2 = 18x - 108)</td>
</tr>
<tr>
<td>5</td>
<td>4 (p_{s+2}) - 6 (n_{s+3}) + 18</td>
<td>3 (p_{s+3}) - 39 (p_{s+1})</td>
<td>(4y^2 = 162x - 972)</td>
</tr>
</tbody>
</table>

CONCLUSION:

In this paper we have represented lateral surface area of the cube with a special number of different ranks and presented some notable relations. One can also try the same with any other geometrical figures and special numbers.

REFERENCES:

