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ABSTRACT
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1. INTRODUCTION

In the study of queue networks one typically tries to obtain the equilibrium distribution of the
network, although in many applications the study of the transient state is fundamental. The transient
response is necessarily tied to any event that affects the equilibrium of the system.

Multi-server queuing systems arrive in congestion problems of telephone exchange and
computer networks. A complete description of situations with such queuing analysis of computer
systems can be found in Lavenberg **. In many real multi-server queuing situations, the service with
heterogeneity is a common feature. The heterogeneous servers to the waiting lines are analyzed by
Gumbel.H 3. The role of quality and service performance is crucial aspects in customer perceptions
and firms must dedicate special attention to them with designing and implementing their operations.
For these reasons, the queues with heterogeneity have received considerable attention in the
literature. Transient solution of a two processor heterogeneous system has been discussed by
Dharamaraja.S ®. A control model for a machine center with two heterogeneous system has been
introduced by Liu and Kumar ’. A treaties on the Theory of Bessel functions where discussed by
Watson. G. N & Whitt. W ° has analyzed the Untold Horrors of the Waiting Room: What the
Equilibrium Distribution Will Never Tell about the Queue Length Process. A research on Measures
for Time Dependent Queueing Problem with Service in Batches of Variables Size was done by Garg.
p.c’

In recent times, queuing model with catastrophes has been investigated by Boucherie and
Boxma *, Jain and Sigman ** and Dudin and Nishimura **. Transient solution of a single server
queue with catastrophes are discussed by Kumar,B.K and Arivudainambi.D . An analysis made on
the queuing network model with catastrophes and its product from solution by Chao.X °. The
catastrophes may come either from outside of the system or from another service station of the
system.

A combined analysis of queues with heterogeneous servers subject to catastrophes to find

! Transient

transient solution of an M/M/2 model by Kumar.B.K, Pavai.M and Vankatakrihnan
solution of a Markovian queuing model with heterogeneous servers and catastrophes has been
discussed by Dharmaraja and Rakesh Kumar 2.
From the output of this study, the queueing system is organized as follows:

Q) To describe the queueing model of four server heterogeneous system with catastrophes

and to derive the time-dependent state probabilities for the system size,
(i) To analyze the steady state probabilities of the system size and then
(ili))  Approach few important performance measures that are derived from the system size

probabilities.
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2. MODEL DESCRIPTION

By examining on M/M/4 queuing system with heterogeneous servers and assume that the
servers times follow exponential distributions with the service rates as z, u,, 145,and p, for four
different servers where 14, > 1, > 5 > 11, . Consider the customer arrival process in Poisson with

rate A and system also has one waiting line. FCFS queuing discipline is followed and each customer
requires exactly one server for the service. When the server becomes free, the customer who is first
in the waiting line will join the queue. Other than arrival and service processes, there also occur

catastrophes at the service facilities with rate » in a Poisson manner. In the system, whenever a
catastrophe occurs it destroys all the customers in the system immediately, and also the server get
inactivated. Then the service is started when a new arrival occurs. Let {X (t)te ER*} be the number
of customers in time t. Let P, (t)=P(X(t)=n), n=4,5,6,... denotes the probability of n customers in
the system at time t. Also let P,(t)=P(X(t)=0) be the probability that the system is empty at time t,
P,(t)=P(X(t)=1) be the probability that there is one customer in the system, P,(t)=P(X(t)=2) be
the probability that there are two customers in the system, and P,(t)=P(X(t)=3) be the probability

that there are three customers in the system.

From the above assumptions the state probabilities
P,(t),P,(t),P,(t),P,(t)and P, (t), n=456... satisfy the following system of differential difference

equations:

) im0+ )P, f0) 1)
RO (s s ) 2200+ (410 .0 22)
dljjzt(t) = (At + sty + )P, () + AP, O)+ (14, + g1, + 12, P, (1) (2.3)
d%t(t) = (At sty 41y + s+ Py ()+ AP )+ (s + 41, + 415 + 42, P4 1) @4
P) sty s, R 20,00+ o =+ R 28
dp, ()

= (At gty + pty + gty + g1y +17)P () + AP (6)+ (g + st + gty + 41, )P, (t), N =56,... (2.6)

Suppose at time t=0 there is no customer in the system, so that Po(t)zl. By using a

probability generating function technique the above system of equations are solved. By letting,
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P(2,t)=Gy(t)+ S P, (1) @2.7)

n=0
where G, (t)="P,(t)+P,(t)+P,(t)+P,(t)+P,(t), with initial condition P(z,0)=1.
Apply the standard generating function argument, the system of equations 2.1 to 2.6 then
yields

oP(z,1)
ot

L Gyt Alz-DR0)+ | 2+ 4~ () [Pl20)-Gul0] @)

where g = 1, + pt, + i3 + py.

Examine equation 2.8 as a first order linear differential equation in P(z,t) and solving, we get ,

P(z,t)=e™ + _f;{n(l— G,(u))+ A(z-1)P,(u)- BG, (u)le®**)du (2.9)

where B:[/lz+£—(/l+y+77)}
z

By utilizing the Bessel function generating function, if « =2/ Az and S = \/Z , then
U

(ﬂz+§jt o n
e =37 1(at)p2)
where 1, (.) is the modified Bessel function of first kind of order n.

Equating this in equation 2.9, then expanding P(z,t) as a series in z and comparing the co-efficient

of z" on either side, we get for n=1,23,...
Pn+4(t): Ign | n(Olt)B’bt +77,B".[;(1—G0(u))ln(a(t _u))efb(tfu)du

2 X () RSN P ) S

—b(t-u)

B[ a(alt-u)g + uA (ot -u))-bl (alt-v)Bo (e du (210)
where b = A+ x+n and further, when n=0, we get
PGo(t)= Aglatle ™ + " [} (1-Gylu)lo et ~u)le e
+ 2[Rl -u)- Ayfalt-w)

—b(t-u)

- [ A (et -u)s ™ ~bpl(alt -u))e,(ue  du (2.11)

where we have used |_ ()=1,(.).
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Since P(z,t) does not contain terms with negative powers of z, the right hand side of 2.10

with n replaced with —n must be zero. Thus,

0= "1, (atle™ +np" [ 4=Gy (), (alt—u )™l

T X (ot V S I T | S

—b(t-u)

=B [ [alalt-)B* + uf (et -u)-bl, (et v, du (212)

Utilizing equation 2.12 in 2.10, after some algebraic manipulation, we obtain for n=1,2,3,...

P.(t)= nﬂ”j;P4(u)Meb(‘”)du

(t-u)

(2.13)

So far, the probabilities P,(t),P,(t),P,(t),P,(t)and P,(t) remain to be found. To find, we

consider the system of equations 2.1 to 2.4 subject to condition 2.11. Equations 2.1 to 2.4 can be

expressed in matrix from as

dl;—ft) =MP(t)+ e, + uP,(t)e, (2.14)

where P(t)= (P, (t)P,(t) P,(t) P,(t))", e, =(1,0,0,0)" and e, =(0,0,0,1)",

—-A+n y7A 0 0
vl A —Grmrn) H + 14, 0
0 A —(A+ py + 1, +17) Iy + 1y + 11y
0 0 A —(A+ 1y + 1y + 15 +17)

In continuation, let P, (s) denote the Laplace transform of P, (t). Now, by taking Laplace

transforms, the result of 2.14 is obtained as

P (s)= (sl —M)IKH%}I R ﬂp;(s)ez} (2.15)

with P(0) = (1,0,0,0)" (2.16)
Hence, only P, (s) is to be found. We note that, if e = (11,1,1)",

G, (s)=e"P"(s)+P, (s) (2.17)

Taking Laplace transforms, after simplification, equation 2.11 yields,
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GO*(s)=5+ 1 P4*(s)[Q—\/QZ —a? —2/1] (2.18)

S 2(S+77)
where Q=s+A+u+n

Utilizing 2.18 in 2.17 and solving for P, (s), we obtain

[“ Zj[l—eT(sl ~M)*(s+n)e]

P, (s)= (2.19)
(s+7+ 1)_;[9 VO e (st~ M) (s + e,
Let (sl-M)" = (mij*(s))‘lx4
It is easy to see that,
gl(s)i(s)_ﬂvgs(s)(ﬂl +/U2) _ﬂli(s) gs(s)/ﬁ(ﬂl +/U2) _/ul(/ui +ﬂ2)(:u_:“4)
~2i(s) fshi(s)  —f(s)aa(shen+p2)  FUS)Het+ et — 1)
/1293(5) —Af (S)ga(s) 93(5)(f (S)gl(s)_ ﬂﬂl) (ﬂlul —f (S)gl(s))(ﬂ - ,U4)
(S| _ M)—1 _ - At (S) ﬂ’(lﬂl —f (S)gl(s)) f (S)j(S)— /ulﬂ‘QZ(S)
[D(m)
(2.20)

where g,(s)=s+ A+, +17;  9,(S)=S+A+u +u,+1;  Qy(S)=S+A+ 1y + 4, + 41, +17;

f(s)=s+2+n; i(5)=0,(8)aa(s)~ Al —r) i §(8)=04(5)32(8)— Ale + 125).
and

ID(M) =5 + *(4(2 +17)+ 3u4 + 28, + pio)+ $°[(A + g +1)28(2+17)+ 28, + pig)+ (st + 11Nty + 1)
+ 3+ 1)+ )+ U QA+ + 0N +7)+ 20 + 1)+ (4t + 1 pty + 1)+ 117

+ 2122 + (A4 1)Bn +30)+ (7 + 10 X220 + 208, + 13 )+ T g+ (et + 0, ety + gy

7l + (80 Wty + 201, + 41;)+ 11, (20, +87) 4 41, sty + 415 )| " (g + 1) +

V40P e+ g+ 72 47 + 22+ (2 + m)2us™n+ 3t + e + 324, |

(e n+ ppen as + 1ty + )+ g |

The characteristics roots of the matrix M are given by
ID(M)=0 (2.21)

By defining,
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1
a= 5{4[(/1 1+ 123(A+ 1)+ 28, + p15)+ (1, + 1)ty + 1)+ 3p (e, +17) + p1577]
—[4(2+n)+ 3 + 20, + 1T |

1

b= @{2(4(/1 +10)+ 3+ 24, + g1 ) = 16[(2 + g + 17232 +17) 4 21, + p1)+ (a1, + 1)1, + 1)
+ 34 (et + 1)+ o J(A+ (A + XA +7)+ 208, + p15) + (1t + 1ty + 1)+ 211]
+ /1[12 /1 + 77)(3/% + 377) (77 T )(2/11 + 20, + 14y ) + 7#177]+ (/ul T H, )(ﬂl/uz + #1#3)
el + (0 + 80 N + 28, + 11,)+ 120, +80)+ 115 (1t + 11 )|+ 107 (11+ 1))+
64((2+ 7 (2417 + g + 2 + 12 + 22 |+ (A 24 + Bpapan + pupan + 324
(e’ + g o + 11, + 1ty + 1)+ gt )

n=2+J- anda_lcos{

} the characteristic roots of 2.21 are

2J-a®

s =n cos[e (- 2)%’1 _(42+n)+ 32‘1 Y2 15) 1934 2.22)

It is examined that m,;"(s) are all rational algebraic functions of s. Then, the inverse transform

m, (t) of mkj*(s) Is obtained by partial fraction decompositions. Since the characteristics roots

s,,1=1234 of M are all real and distinct, m,(t) is the inverse transform of m,(s), which are
given by,
m,,(t)= 24: 0 (8095 (895 (5) = A(s = 11 )] = 295 (s N + 12,) e
4
kL Hi:l,i::k (Sk B si)
i /J1[gz Sk gs(sk) ﬂ'(/’l—ﬂél)]eskt
k=l H—ll#k (Sk _Si)
ZA: 05(S )4 1ul + ﬂz)e
k=1 H =1,i=k Sk_s
m(t)= 3 Al T M ) o

1 i=Lizk (Sk N Si)

: ﬂv[gz Sy g3(sk) (/U )]e
AP R §

if Sk gz Sk)gs(sk) ﬂ(ﬂ_,%)] St

€
k=1 HI 1|:«:k(Sk _Si)
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mzs(t) - i —f (SkA)ga(sk )(lu’l + ;uz)eskt

k=1 Hi:l,i¢k (Sk - Si)

()= S F (e + 4 )t — 1)
24(t) ; H?:l,i¢k(sk_si)

o5t

m _ C 93(Sk)(f(sk )gl(sk)_;tﬂl)eskt
33(t) kzﬂ: HiA:l,#k (Sk - Si)

C (&‘11 —f (Sk )91(sk ))(:U - /‘4)
é Hi4:l,i¢k (sk =S )

eskt

ms, t)

m43(t) = 24: A(/I'Ul —f (Sk )gl(sk ))

k= Hi4:1,i¢k (sk —Si )

From the matrix 2.20, we achieve,

(51~ M) (s+n)ey = (s+7)>m, () (2.23)
and e’ (sl =M)™ (s +7)e, = (s+77),uZ4: m,, (s) (2.24)

Replacing 2.23 and 2.24 in 2.19, we get

(1+ Zj{l— (s+ ry)jz:‘mjl*(s)}
i (s+77+/1)—;[Q—m]+y(s+n)§mj4*(s)

P, (s)

(2.25)

Utilizing equation 2.20 in 2.15, we have
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Po*(s) = ! { 1+ g}(%(s)i(s) - 193(5)(,% T4, )) + P4*(S),u[— ﬂl(ﬂl + )(,U —Hy )]}

o)
_ [1+% M, (8)+ 1 my, (5P, () (2.26)
* 1 ] *
R ) LA RO AR |
= 1+% m,, (s)+ um,, (s)P, (s) (2.27)

P 6)= il (12 o) O F(od - )

DV

= (1"' % mSl*(S)+ H m34*(S)P4*(S) (2.28)
Pl (6)= gy (1 2 2 L0 - s o)

=[1+g My (s)+ ey (5P, (s) (2.29)

From matrix theory, the characteristic roots s,,i=212,3,4 of M provided are all real and

distinct. Explore s, =0, it can be obtained by partial fraction decompositions as

1) gy (o) S 1005 005.005)- A )| Al Yo s o)y

S Hiil,i:tk (s s ks )

Sy $=A00) s u;>l§s+ﬂ>2 =)

() 86 0805) Ao -

k=0 H;,iik (Sk -5 )(S — Sk )

)95 (si)— Alg = p2,))(s +77) =1+n,,(s)
B CELY CEEN ’
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(s+7)m *(S):iMQE(Sk)(ﬂﬁﬂz)(S“?) n, (s)

s)8a(s i+ ) +m) _ <y

k=0 H?l,ik(sk S)(S Sk)

senIm(s)=1+ C [f(sk)gl(sk)_ﬂﬂl]gs(sk)(s+77): n (s
o = T e e sy
1 f(Sk)gl(sk)](S+77):
k0 Hitlk(sk s )s—s,)

s (o) Sl g = s )
( 77) 14() kZ:(; ;#k(sk—si)(S—Sk) 14()

(o) 5 F S en+ = s Ns +) _ o
) ; H'4—1i¢k(5k _S')(S_Sk) * ( )

(s+77)m _ 24: /1/11 - f(sk )gl(sk )](ﬂ /u4)(3+77)

T L5

—_
w
+
S
3
N}
@ oy
—
w
~
I
Mb
—h
—~

Nys (5)

=Ny, (5)

and

. {f(sk)[gl(sk)gz(sk)_l(lﬁ+/‘2)]_:L‘1/192(Sk)}(5+77): on (s
% [T 05 5 )55 e o)

where n,"(s)'s , denote the summation terms in the above expressions.

(S + 77)m44*(8) =1+

Applying these in equation 2.25 and after some algebraic manipulations, we will get
4
i[Q—\/Q2 —a’ ](U—anf s j

el 1+—[Q NP - luan

which implies P, ( _2 [Q \/927](77 d, ( j[1+—[Q F]u@ } (2.30)

4

where d,’(s)=>n;(s), i=14.

j=l
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The previous equation can be expressed as,

p4*(s)=i(1)"(§jn+{ﬂ[g_— VQZ—O‘ZJ —dl*(s{g_— "Qz_“zl }[#d:(s)]W (2.31)

rs S o a

Taking inversion on equations 2.26-2.29 and doing some algebraic operations, we get

Py(t) = my, (t)+ [ myy(u)du + [ em,(t—u)P, (u)du (2.32)
Py(t) = my, (0)+ 7] myy (u)du + [ e, (t —u)P, (u)du (2.33)
P, (t) = my, (t)+ 7] may(U)du+ [ pemy,(t—u)P, (u)du (2.34)
Py(t) =My, (0)+77 [ myy(u)du + [ em,,(t—u)P, (u)du (2.35)

Therefore, equations 2.13 and 2.31-2.35 completely determine all system size probabilities.
3. STEADY STATE PROBABILITIES
This section deals with the structure of the steady state probabilities of the M/M/4 Queuing

model with heterogeneous servers and its disasters.

Theorem 3.1: The steady state distribution of the queuing system M/M/4 with heterogeneous
service states and catastrophes is obtained as follows:

i) For >0 and A # u , then
AnC

— A
Bl asn— )= Jor —aA + unkE
5 n—u H =5

P, = (i} [b—w/bz — 4 ]”P4 ,n=123,.. (3.2)

P, (3.1)

P, :Di{n[ﬂ,(ﬂ,—t—?])(ﬂ—i—,ui-i-ﬂ)-k(;t-i-,u—/Q+77)(ﬂv77 + (e +1)en + 1+ — g (e + 10, Nt — 1

A

1
Py = e An[AA e n)+ (o + gty + W2+ = g )] 2Nty + gty Nt = g2 )P}

A

(3.4)
P, = Di Wn(a+ = pg +n)+ slpay (e ) A+ i+ 0=, P, | (3.5)
P; = Di{— 2+ w0 +n(e s n)A+m+ )P (3.6)
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where

C, =& +An(44+ Aty +21)+ pun(ay + sty + 241 +17)+ g1 A+ 1, + 15 +17)
(4 + 4ty + 200 YA+ pi + py + 1y +17)
D, =(A+n) (2,U277 +un+ A+t + 2277)+ (A+ 77)(2;11277 + 304 11,1 + 1151 + B/Iyln)
e+ papaon Yoty + gty + gy + 1)+ pipi”
E, = (e + sty + g g (s + 11, = 2)+ (247Nt = A=1)|+ AMA+ 1) 2+ 217)
+ Aty + 1, )+ (et + N A+ gy + g2, +17)]

i) For >0 and A= , then
nC

y7i
P=5 — (3.7)
2”[77— dun+n ]+w7Eﬂ

| :(ij [(2,u+77)—\/4,u77+772]nP4 ,n=123,...

(3.8)

P, = Di{ﬂ[/l(ﬂ )+ + 1)+ 2u— gy + )+ + )y + 1, + 7))

— wpt(w + 11, Y= 12, )Py} (3.9)
Py = e s ) b g2 g ) s+ o= P

7]

(3.10)
P2 = Di{ (20— gty + 1)+ il — X+ g+ )= )P, (3.11)
P, = D_{_ 1°n +,U[,U(,U+77)2 + 77(# + 1y +77)(,u + o, + 77)]13‘4} (3.12)

where
C, = 4+ un(Bp+ pyay +2m)+ s + gty + 2415 + 1)+ o+ pty + iy +17)
+17(aty + g1y + 201+ gty + 1, + g1 +17)
D, = (u+ 1 (2pen + g + 1® + 7% + 2pm) - (s + )21+ Sppayy + ptypasi + 3papem)
e+ s s + sy + gty + 1)+ g’

E, =t + s, + 113 )= 1 (g + g1, — 1)+ (e + 7\t — 1= 1)+ e+ 17 X + 217)
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+ ey + 11 )+ (e + N+ gy + 1, +17))

Proof: For >0 and A = u , from equation 2.23, we obtain

) (1+Zj[1—(s+n)gmjl*(s)}
l (s+77+/1)—;[Q—m]+y(s+n)gmj4*(s)

P, (s)

Multiplying on both sides with s and taking limit as s — O to the above equation, we get

AnC,
D
2‘[(1+77—u)—x/b2 —4/1ﬂ]+ﬂ77E1

The solution 3.1 follows directly from 3.13, by using Tauberian theorem.

LLsPa () = (313)

Taking Laplace transform of 2.13, we have
Pn+4*(s):(£j [Q_ “Qz_az ]nP4*(S)’ n=123,.. (3 14)
(94 .

As before, multiplying 3.14 by s on both sides and talking limit ass — 0, we get
1Y p
(Zj [Q—\/Qz—az] sP, *(s),n=123,.. (3.15)
This yields 3.2, by applying Tauberian theorem again.
Similarly, the results 3.3 — 3.6 can be obtained from 2.24 — 2.27 respectively. For >0 and

LtsP.., *(s) = Lt

s—0 s—0

A= u , the results 3.7 — 3.12 can be obtained directly by putting A =z in 3.1 - 3.6.
Remark: It is observed that the steady-state probabilities of this queueing model exist if and only if

n>0o0r n=0and A< u.

4. PERFORMANCE MEASURES

Few interesting performance measures, involving the mean number of customers in the
system, the probability of arriving customers joining the queue, and the mean number of busy servers
are to be analyzed.
4.1. The Mean Number of Customers in the System

Let N(t) be the number of customers in the system at time t. the average number of customers

in the system at time t is given by,
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E(N®) =P, +P,0) + P, (1) + S (n+ AP, , (1)

n=0

Utilizing 2.13, 2.31, 2.32 and 2.33, the above equation can be written as
E(N(t) = m21(t)+nj: m,,, (u)du +j:y m,,,(t —u)P, (u)du
+m,,(t)+ UI: m,, (u)du +j:y m,,(t —u)P, (u)du
+ m41(t)+nj':m41(u)du +£y m,,(t—u)P, (u)du
+4P, (t) +n§;(n +1)nps" j;m(u)We-b(t-”)du (4.1)

where P,(t) is given in 2.29

Suppose 7 >0, the mean number of customers in the system under steady-state is computed as

2111(4,11—|b—\/b2 —4u DP4 N (4.2)

E(N) = :
(Zy—[b—\/bz —MyD

i{n[ﬂz(ug — A= 1)= A+ gty + 1) gt — 2 + 1) }

D, |+ el — 11 Na+ 1) aty = A=)+ gy |+ AR 40 +5(A+ sy + A+ s+ 1y + 1) = Aoty P
if 1+ u

and E(N) = 2,u(2,u—77+w/4,u77+7272 )P4 N (4.3)

(\/4w7+772 —77)

i{ﬂ[ﬂz(#s — 1= 1) = ety + gt + 1) = g1 +17)| }

D, | (e — st Wt + ) tty — 1= 1)+ pua ) s+ 1+t g+ X+ s+ g1y + 1) — pas e, P
if A=u

where P,isgivenin3.1for A= x andin3.7for A= u.

4.2. Probability of Arriving Customers Joining the Queue

The probability that an arriving customer is required to join the queue at time t is given by

PIN® 24 =3P, ()

=P, (t) +inﬂ”I;P4(u)Web““)du (4.4)

Comparing, for n > 0, the steady-state probability that an arriving customer joins the queue is
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2uP, .
A= u
- —A—-n)++b? -4,
P(N22)=>P,, = (u ) Pn) . (4.5)
-0 anl Jif A= u

N0 +4un —n

4.3. The Number of Busy Servers
Let B(t) denote the number of busy servers at time t. The probability that the system has n

busy servers is given as,

P(N(t) = x)=P,(t) ,for x=1,2,3

S'P, () |, for x=4

n=0

P{B(t) = x} = (4.6)

N t) > 3
and the corresponding steady-state probability is obtained for 77 >0 and A # u as

22 (s = 2= 1) = Aty + sty + 1) = g2 +17))

- (/‘_ﬂ4)[(/1+77)(:u2_/1_77)"'1#1]"' Jif x=123
D, |+ P

U
P(B=x)= MA+n) + 0+ +n)A+ pm + p, +1) = Aty
2P,

(1= A=n)+b* - 43

Jf x=4

4.7
Comparing the above probability, it can be obtained directly, for » >0 and A = x by substituting

A = u in 4.7. Furthermore, the mean number of busy servers at time t is given by

E(B() = P,(t) + P, (1) + P, () + 23 P, ., (1)

which can also be written as E(N(t)) = P, (t) + P, (t) + P, (t) + i(n +4)P,., (1) (4.8)

n=0

If >0, the corresponding steady-state solution is given as

2{/13(/1 + Ap)+ 22 pty + w1y )+ gy +4n)+ A ? (2, + 11y )+ a5 +,7)+}

anle® + p1,? + 20, + gty + g

E(B) = D {22 (uty = A= 11) = Aty + pay + 1Nt — g2y +17)) (4.9)
_ [(ﬂ—m)[(/ﬂﬂ)(uz — A=)+ A ]+ ﬁ(/“ﬂ)TP

-

+ (At + 1) A+ + wy + 1) = Ay g

if 1#u
The above probability for 7 > 0and A = & can be obtained directly by substituting A =z in 4.9.
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CONCLUSION

In the transient and steady-state analysis, a four heterogeneous server queueing system

subject to catastrophes is constructed then the time-dependent probabilities for the number of

customers in the system is obtained. The steady-state probabilities of the system size are also found.

At last, few important performance measures have been extracted from the steady-state probabilities.
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