Palynomorphological Diversity Among The Species Belong To 12 Genera of Malvaceae Sensu lato

Devarinti Srihari Reddy 1 and Reddy A. Vijayabhasker *2

1Dept.of Botany, Govt. Degree College, Patancheru, Sanga Reddy Dist., Telangana, India. Emil: sambasadaasiva@gmail.com
2Dept. of Botany, Osmania University, Hyderabad, Telangana, India. Email: avijayabhaskarreddy@gmail.com

ABSTRACT

Malvaceae sensu lato (s.l.) is a heterogeneous family rich in highly diversified characters among its taxa, since phylogenetic studies on Malvaceae sensu lato lead to merger of core families of Malvales, i.e. Sterculiaceae, Tiliaceae, Bombacaceae and Malvaceae s.s. into its fold and distribution of their genera among nine subfamilies: Bombacoideae, Brownlowioideae, Byttnerioideae, Dombeyoideae, Grewioideae, Helicteroideae, Malvoideae, Sterculioideae, and Tilioideae. While understanding its taxonomical relationships and affinities, it is important to identify palynomorphology to delimit the taxa. In this study, pollen morphology of common species of this family belong to Chityal Reserve Forest area, Nalgonda district, Telangana is discussed. Pollen morphological characters of these species range from spheroidal to prolate, echinate and reticulate to scabrate to granulate, pantoporate to colporate to trizonoporate etc., which reflect the diversity among the taxa. This study is based on pollen morphological variations among the common species, each belong to 12 different genera with a key for their simple identification.

KEY WORDS: Malvaceae s.l., Palynomorphology, Chityal RF.

*Corresponding author
A.Vijayabhasker Reddy
Dept. of Botany, Osmania University,
Hyderabad, Telangana, India.
Email: avijayabhaskarreddy@gmail.com
INTRODUCTION

The traditional Malvaceae sensu stricto (s.s.) contained a homogeneous and monophyletic group. Based on number of morphological and molecular data, Malvaceae sensu lato (s.l.), is recently defined in APG III\(^2\), in which closely related families belong to core Malvales, i.e. Sterculiaceae, Tiliaceae, Bombacaceae and Malvaceae have been merged into its fold making it an expanded heterogeneous family. According to APG III Classification, Malvaceae s.l. contains nine subfamilies: Bombacoideae (formerly Bombacaceae, in part), Brownlowioideae, Byttnerioideae, Dombeyoideae, Grewioideae, Helicteroideae, Malvoideae (formerly Malvaceae), Sterculioideae (formerly Sterculiaceae, in part), and Tilioideae (formerly Tiliaceae, in part)\(^1,3\). The genera formerly belong to Sterculiaceae are now distributed among subfamilies, Byttnerioideae, Helicteroideae, Sterculioideae and Dombeyoideae in the newly formed family Malvaceae s.l. Most of the genera belong to Tiliaceae are included in Brownlowioideae and Grewioideae and the remaining in Tilioideae\(^3\).

Palynological information is frequently used in the taxonomy and phylogeny of several taxa\(^4-6\), other than in aero-palynology and mellitopalynology etc. Pollen morphology of Malvaceae s.s. was earlier described by El Naggar\(^6\), Christensen\(^7\), Culhane and Blackmore\(^8\), A.Perveen\(^9\) and other related families by Saad\(^10\), N.E. Hussaini\(^11\), A.Perveen\(^12,13\) etc. In India, pollen morphological studies particularly on Malvaceae was done by Nair PKK\(^14-16\), Nayar TS\(^17\), and DS Reddy\(^18\) etc. Lakshmi KG\(^19\) worked on south Indian Malvales for her doctoral thesis. In the context of APGIII, Palynomorphological diversity among the different genera of Malvaceae s.l. belonging to Nalgonda district of Telangana is described here.

Geographical information

Chityal Reserve Forest (RF) is located in Nalgonda District at a Latitude-17\(^\circ\), Longitude-79.2\(^\circ\) (Figure 1), consists of dry deciduous and thorny Scrub vegetation over the hill ranges, which is a common feature of the general Deccan landscape.
Figure 1: Chityal R.F. of Nalgonda district- geographical map
(Courtesy of Dist.Forest Office, Nalgonda with permission)

METHODOLOGY

Fresh polleniferous material was collected from Chityal Reserve Forest area of Nalgonda Dist., Telangana, India. Specimens were preserved in the form of herbaria and identified with the help of standard keys and Botanical Survey of India, Hyderabad. Pollen was acetolysed as per the modified procedure of Erdtman and Nair PKK and mounted by glycerine jelly on glass slides. The prepared slides were observed under a light microscope (Olympus CH20i). Pollen shape, Aperture morphology and sculpturing etc., were digitally recorded based on observation of 10 - 50 grains.

RESULTS

Table 1: Pollen morphological characters of species belong to different genera of Malvaceae (P=polar length, E=equatorial diameter).

<table>
<thead>
<tr>
<th>S.No</th>
<th>Sub family</th>
<th>Scientific name</th>
<th>Pollen diameter (µm)</th>
<th>P (µm)</th>
<th>E (µm)</th>
<th>Pollen shape</th>
<th>Aperture morphology</th>
<th>Exine sculpturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Byttnerioideae</td>
<td>Waltheria indica L.</td>
<td>32-35</td>
<td>35-39</td>
<td></td>
<td>Oblate-spheroidal</td>
<td>4-5 zonocolporate</td>
<td>Reticulate</td>
</tr>
<tr>
<td>2</td>
<td>Dombeyoideae</td>
<td>Melhania incana Heyne ex Wight&Arn.</td>
<td>54-60</td>
<td>64-69</td>
<td></td>
<td>Oblate-spheroidal</td>
<td>Trizoporate</td>
<td>Echinate, reticulate</td>
</tr>
<tr>
<td>3</td>
<td>Grewioideae</td>
<td>Corchorus aetans L.</td>
<td>30-36</td>
<td>20-27</td>
<td></td>
<td>Prolate</td>
<td>Trizoporate</td>
<td>Reticulate, perforate</td>
</tr>
<tr>
<td>4</td>
<td>Malvoideae</td>
<td>Abelmoschus esculentus (L.)Moench.</td>
<td>135-160</td>
<td></td>
<td></td>
<td>Spheroidal</td>
<td>Pantoporate</td>
<td>Echinate</td>
</tr>
<tr>
<td>5</td>
<td>Malvoideae</td>
<td>Abutilon indicum (L.)Sweet</td>
<td>45-60</td>
<td>57-63</td>
<td></td>
<td>Oblate-spheroidal</td>
<td>Trizoporate</td>
<td>Echinate</td>
</tr>
<tr>
<td>6</td>
<td>Malvoideae</td>
<td>Gossypium hirsutum L.</td>
<td>75-86</td>
<td></td>
<td></td>
<td>Spheroidal</td>
<td>6-7 zonoporate</td>
<td>Echinate</td>
</tr>
<tr>
<td>7</td>
<td>Malvoideae</td>
<td>Hibiscus rosasinensis L.</td>
<td>100-135</td>
<td></td>
<td></td>
<td>Spheroidal</td>
<td>Pantoporate</td>
<td>Echinate</td>
</tr>
<tr>
<td>8</td>
<td>Malvoideae</td>
<td>Malvastrum coromandelianum (L.)</td>
<td>45-65</td>
<td></td>
<td></td>
<td>Spheroidal</td>
<td>Pantoporate</td>
<td>Echinate</td>
</tr>
<tr>
<td>9</td>
<td>Malvoideae</td>
<td>Pavonia odorata Wild.</td>
<td>70-90</td>
<td></td>
<td></td>
<td>Spheroidal</td>
<td>Pantoporate</td>
<td>Echinate</td>
</tr>
<tr>
<td></td>
<td>Order</td>
<td>Genus & Species</td>
<td>Range</td>
<td>Shape</td>
<td>Pore Type</td>
<td>Pollen Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>--------------------------</td>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Malvoideae</td>
<td>Sida ovata Burm.</td>
<td>50-70</td>
<td>Spheroidal</td>
<td>Pantoporate</td>
<td>Echinate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Malvoideae</td>
<td>Thespesia populnea (L.) Sol. ex Corr.</td>
<td>70-81</td>
<td>Spheroidal</td>
<td>Pantoporate</td>
<td>Echinate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pollen identification key
I. Echinate (+) and shape spheroidal to oblate spheroidal

Ia. Basal cushion (+)
 1. 3-zonocolporate - *Abutilon indicum*
 2. 6, 7-zonoporate - *Gossypium hirsutum*
 3. Pantocolporate
 i. Basal cushions distant - *Sida ovata*
 ii. Broad basal cushions arranged closely, short and acute spines - *Malvastrum coromandalianum*
 4. Pantoporate - *Thespesia populnea*

Ib. Basal cushion (-)
 5. 3-zonoporate, spines dimorphic and surface reticulate - *Melhania incana*
6. Pantoporate
 6i. grain size > 100 µm spine tips acute
 a. spine length 10-15 µm, grain size 100-135 µm, pore diameter < 7 µm
 - Hibiscus rosa-sinensis
 b. spine length 15-18 µm, pore diameter > 7 µm, grain size 135-160 µm
 - Abelmoschus esculentus
 6ii. grain size < 100 µm, spines columnar, tips blunt
 - Pavonia odorata

II. Echinate (-)
 II a. Oblate to oblate-spheroidal
 7. 3-zonoporate, oblate, exine surface papillate - Helictores isora
 8. 4, 5-zonocolporate, oblate- spheroidal - Waltheria indica
 II b. Prolate to subprolate
 9. 3-zonocolporate, faintly reticulate - Corchorus aestuans

DISCUSSION

Several studies were conducted on the pollen morphology of Malvaceae s.s.. Christensen\(^7\) extensively investigated 120 species belong to 40 genera of Malvaceae s.s.. Anjum Purveen\(^9\) elaborately studied Abutilon, Sida, Abelmoschus, Senra, Malva and Hibiscus pollen types of Malvaceae, Corchorus, Grewia and Triumfetta species of subfamily Grewioidae\(^12\) and two Melhania species of subfamily Dombeyoideae\(^13\) from Pakistan. 21 species of Egyptian Malvaceae were investigated by El Naggar\(^6\). Grewia, Hermannia and Melhania types were studied by NE Husseini\(^11\).

Malvaceae s.l. pollen is eurypalynous with wide range of morphological diversity from spheroidal to oblate to prolate shapes, aperture number and character from 3-zonoporate (Helictores isora) to pantoporate and exine surface from granulate/scabrate (Abutilon indicum) to reticulate (Waltheria indica and Corchorus aestuans) to papillate/baculate (Helictores isora)(table 1). Pollen morphological diversity of the family is useful in the identification of different genera in palynotaxonomic, aeropalynological and mellitopalynological studies. Species belong to Malvoideae and Dombeyoideae subfamilies have echinate pollen, whereas species belong to remaining subfamilies have non echinate pollen. Except the pollen of the species belong to Grewioideae subfamily (previously belong to Sterculiaceae and Tiliaceae) where the pollen is prolate to subprolate, pollen of the remaining subfamilies in major cases spheroidal to oblate-spheroidal to sub-oblate. Presence or absence of the basal cushion is the main criteria in distinguishing the species.
belong to different genera of Malvoideae subfamily. In this subfamily, pollen of species belong to genera *Abutilon*, *Gossypium* and *Sida* can be identified based on the presence of basal cushion and those belong to genera *Abelmoschus*, *Hibiscus* (Fig.2) without basal cushion. According to evolutionary studies porate form is evolved from colporate and colpate and increase in the number of pores (pantoporate) is an advanced character as against primitive monoporate/sulcate form in Monocots. Aperture morphology usually 3-zonocolporate to pantoporate in Malvoideae and Dombeyoideae, in other subfamilies it ranges from 3,4-zonocolporate to 3-zonoporate. Based on aperture evolution species of Malvoideae subfamily with pantoporate pollen can be considered as highly evolved. Pollen of species belonging to the genera of *Grewiodeae*, *Sterculioideae* and *Dombeyoideae* subfamilies is tricolporate and exine surface is reticulate. In *Melhania incana*, pollen is dimorphic with both curved and erect spines. Among the 12 genera, spines of the pollen of *Abelmoshusc esculentus* are the longest.

CONCLUSION

Malvaceae s.l. is eurypalynous with diversified taxa. In the context of APG III, it is necessary to discuss pollen morphological variations and affinities among the taxa at genera/subfamily level. Here the palynomorphological diversity among the 12 genera belong to various subfamilies is discussed. Diversity in pollen morphology is evident based on the presence or absence of the spines, spine length/number, size and shape of the pollen, aperture shape/size and number and tectum ornamentation. It is useful in delimitation of taxa and affinities among the subfamilies/genera in the view of linking with their evolutionary origin.

REFERENCES

ACKNOWLEDGEMENT

Authors are thankful to Head, Dept. of Botany and Prof.(Retd.) P. Ramachandra Reddy for the support extended. Dr. J. Swamy (BSI, Hyderabad), Prof.(Retd.) T. Pullaiah and Dr. Sadasivaiah for their kind help in identification and authentication of species. This work was done with the partial financial support of Minor Research Project grants from UGC, New Delhi.