Solution of Fractional Differential Equations By Adomian Decomposition Method With Chebyshev Polynomials

Baishya Chandrali* and Jaipala
Department of Studies and Research in Mathematics, Tumkur University, Tumkur -572103, Karnataka, India. baishyachandrali@gmail.com and mamillajaipalareddy@gmail.com

ABSTRACT: We study the nonlinear fractional differential equations using Adomian Decomposition with Chebyshev polynomials. The source terms are represented in terms of Taylor series and Chebyshev basis elements. The schemes are tested for some examples and the validity of the results are compared with the exact solution obtained by taking the value of fractional derivative α as integer.

2010 Mathematics Subject Classification.: 26A33, 34K28, 35C10, 35G20.

KEYWORDS: Adomian Decomposition Method, Chebyshev polynomials, Fractional differential equations.

*Corresponding author
Chandrali Baishya
Department of Studies and Research in Mathematics,
Tumkur University, Tumkur -572103,
Karnataka, India.
baishyachandrali@gmail.com
1. INTRODUCTION:

George Adomian1, 2, 3, 4 introduced a powerful method named as Adomian decomposition method (ADM) for solving linear and nonlinear functional equations. Adomian decomposition method, is a well-known for analytical approximate solutions of linear or nonlinear differential equations. In the last two decades, extensive work has been done using ADM, as it provides analytical approximate solutions for nonlinear equations and considerable interest in solving fractional differential equations using ADM has been developed5, 6, 7, 8, 9, 10.

In the recent times, technique of approximating the solutions of differential equations by orthogonal polynomial has become extremely popular. In that line of thoughts, Chebyshev polynomial is one of the important polynomials which is widely used11, 12, 13 to solve various linear and nonlinear differential equations having physical significance.

In this paper, we have presented a simplified technique to handle highly complicated source term present in nonlinear fractional differential equations. Adomian Decomposition method is applied to these equations by using Taylor series expansion and Chebyshev polynomial representation of source terms.

2. PRELIMINARIES

2.1 BASIC DEFINITION OF FRACTIONAL CALCULUS

In the section we have quoted some of the important definitions of fractional calculus14.

\textbf{Definition 2.1} The Riemann-Liouville fractional integral operator J^α of order $\alpha \geq 0$ is defined as

$$J^\alpha y(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x - t)^{\alpha - 1} y(t) \, dt, \quad (\alpha > 0, t > 0)$$

such that $J^0 y(x) = y(x)$

\textbf{Definition 2.2} The fractional derivative of order α in Caputo sense with $n - 1 < \alpha < n$ of $f(t), \, t > 0$ is defined by

$$D^\alpha f(t) = J^{n-\alpha} D^n f(t) = \frac{1}{\Gamma(n-\alpha)} \int_0^x \frac{f^{(n)}(t)}{(x-t)^{\alpha-n+1}} \, dt$$

2.2 CHEBYSHEV POLYNOMIAL

$T_i(x)$ is the first kind of orthogonal Chebyshev polynomial,

- $T_0(x) = 1$
- $T_1(x) = x$
- $T_2(x) = 2x^2 - 1$
- $T_3(x) = 4x^3 - 3x$

and in general $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x), \, k \geq 1$.
Applying the method described in [14] we have
\[
\sum_{i=0}^{2.3} _{\text{ADOMIAN DECOMPOSITION METHOD}} \]

The Adomian decomposition method has been used in [9-14] to solve effectively, easily and accurately a large class of linear and non-linear ordinary, partial, deterministic or stochastic fractional differential equations with approximate solutions which converge rapidly to accurate solutions. In this part, the concept of Adomian decomposition method is presented. For this reason, we consider the differential equation

\[
Ly(x) + Ry(x) + Ny(x) = g(x)
\]

With initial value \(y^i(0) = \alpha_i, \ i = 0,1,2,\ldots n \)

Here L is an invertible linear operator, R is the linear operator and N is a nonlinear operator Using the inverse operator \(L^{-1} \) to both sides of Eq.1, we obtain

\[
y = \phi(x) + L^{-1}[g(x) - Ry(x) - Ny(x)]
\]

\[
y = \phi(x) + L^{-1}g(x) - L^{-1}Ry(x) - L^{-1}Ny(x)
\]

Where \(\phi(x) \) arises from the given initial condition. The ADM suggests that the solution \(y(x) \) may be decomposed by the infinite series of components

\[
y(x) = \sum_{n=0}^{\infty} y_n(x)
\]

and the non-linear operator \(N(y) \) can be decomposed by an infinite series of polynomials given by

\[
N(y) = \sum_{n=0}^{\infty} A_n(x)
\]

and the \(A_n \) are the so-called Adomian Polynomials of \(y_0, y_1, \ldots y_n \) defined by

\[
A_n(y_0, y_1, \ldots y_n) = \left\{ \frac{1}{n!} \frac{d^n}{dx^n} F(\sum_{i=0}^{n} \lambda_i y_i(x)) \right\}_{\lambda=0}
\]

considering the fractional differential equation of the form

\[
D^a y(x) + Ry(x) + Ny(x) = g(x)
\]

with initial condition \(y^i(0) = \alpha_i, \ i = 0,1,2,\ldots n \) and \(0 < n < \alpha \), where \(D^a \) represents fractional derivative operator, \(R \) is the linear operator, \(N \) is the nonlinear operator and \(g(x) \) is the source term.

The method is based on applying the Riemann-Liouville fractional integral operator \(J^a \). Using the inverse on equation 5, we get

\[
y(x) = \sum_{k=0}^{a} y^{(k)}(0) \frac{x^k}{\Gamma(k+1)} + J^a[g(x)] - J^a[Ry(x)] - J^a[Ny(x)]
\]

We write \(N(y) = \sum_{n=0}^{\infty} A_n(x) \) and \(y(x) = \sum_{n=0}^{\infty} y_n(x) \), where the components of \(A_n(x) \), called adomain polynomials for each i, \(A_i(x) \) depends on \(y_0, y_1, \ldots y_n \) only.

Substituting 2 and 3 in Eq.6, we obtain
\[y_0 = \sum_{i=0}^{a} y^{(k)}(0) \frac{x^k}{i(k+1)} + J^a g(x) \]
\[y_1 = J^a[Ry_0] - J^a[A_0] \]
\[y_2 = J^a[Ry_1] - J^a[A_1] \]
\[\vdots \]
\[y_{k+1} = J^a[Ry_k] - J^a[A_k] \]

The required expressions for \(A_i(x) \)'s are

\[A_0 = F(y_0) \]
\[A_1 = y_1 F'(y_0) \]
\[A_2 = y_2 F'(y_0) + \frac{1}{2} y_1^2 F''(y_0) \]
\[A_3 = y_3 F'(y_0) + y_1y_2 F''(y_0) + \frac{1}{2} y_1^3 F'''(y_0) \]
\[\vdots \]

If the series converges, we can see that

\[y = \lim_{n \to \infty} \sum_{i=0}^{n} y_i(x) \]

And where \(F(y) = N(y) \).

To perform ADM for complicated source term \(g(x) \), we shall express it in Chebyshev polynomials as

\[g(x) = \sum_{i=0}^{m} a_i T_i(x) \]

where \(T_i(x) \) is the first kind of orthogonal Chebyshev polynomial \(^{11} \).

In the following section, we have applied the above method to two nonlinear fractional differential equations.

3. APPLICATIONS

Example 3.1: We consider the fractional differential equation

\[y^\alpha + xy' + x^2 y^3 = (2 + 6)x^2 e^{x^2} + x^2 e^{3x^2} \] \((7) \)
\[y(0) = 1 \quad y'(0) = 0 \quad 1 \leq \alpha \leq 2 \]

Exact solution at \(\alpha = 2 \) is \(u(x) = e^{x^2} \)

Solution: According to Eq.5 we have

\[R = x \frac{d}{dx}, \quad Ny = x^2 y^3 \quad \text{and} \quad g(x) = (2 + 6)x^2 e^{x^2} + x^2 e^{3x^2}. \]

Since \(Ny = x^2 y^3 \), the Adomain polynomials are,

\[A_0 = x^2 y_0^3 \]
case(i): The Taylor series expansion of $g(x)$ is

$$g(x) = 2 + 9x^2 + 10x^4 + \frac{47x^6}{6}$$

Applying the ADM method described in Section 2.3, we get

$$y_0 = 2x^\alpha \left(\frac{1}{\Gamma(\alpha+1)} + \frac{9x^2}{\Gamma(\alpha+3)} + 60x^4 \left(\frac{2}{\Gamma(\alpha+5)} + \frac{47x^2}{\Gamma(\alpha+7)} \right) + 1 \right)$$

$$A_0 = t^\alpha \left(\frac{1}{\Gamma(\alpha + 1)} + \frac{9t^2}{\Gamma(\alpha + 3)} + 60t^4 \left(\frac{2}{\Gamma(\alpha + 5)} + \frac{47t^2}{\Gamma(\alpha + 7)} \right) + 1 \right)^3$$

And so on.

\[
y_1 = - \frac{2x^{2\alpha}(3(\Gamma(\alpha+1))(9\alpha+4)^4 + 40\alpha^2)}{\Gamma(\alpha+3)^3\Gamma(\alpha+5)^5\Gamma(\alpha+7)^3+1} \left(2x^{\alpha+2}(3(\Gamma(\alpha+1))^2(\Gamma(\alpha+3)\Gamma(\alpha+5))\Gamma(\alpha+7) \\
((3\Gamma(\alpha+3)\Gamma(\alpha+5)\Gamma(\alpha+7) 240\Gamma(\alpha+7)\Gamma(3\alpha+9)\alpha^{\alpha+4}) + \Gamma(\alpha+5) \left(\frac{\Gamma(\alpha+7)\Gamma(2\alpha+5)}{\Gamma(3\alpha+5)} + \frac{5640\Gamma(3\alpha+11)x^{\alpha+6}}{\Gamma(4\alpha+11)} \right), \ldots)) \right)
\]

And so on.

Figure 1 : Absolute norm $\| \text{exact} - y_{Taylor} \|$ in case(i) at $\alpha = 2$ for Example 1

case(ii): Now let $M=6$, since L^{-1} Riemann-Liouville fractional integral operator and the Chebyshev polynomials of $g(x)$ is

$$g(x) = 2.03164 - 2.89636x + 51.4781x^2 - 226.976x^3 + 560.267x^4 - 623.301x^5 + 281.173x^6$$
Applying the methods described in section 2.3 yields

\[y_0 = x^\alpha \left(\frac{2.03164}{\Gamma(\alpha + 1)} \right) + x \left(102.956 \frac{x^4}{\Gamma(\alpha + 3)} + 202445. \frac{x^4}{\Gamma(\alpha + 7)} - 74796.1 \frac{x^3}{\Gamma(\alpha + 6)} + 13446.4 \frac{x^2}{\Gamma(\alpha + 5)} - 1361.86 \frac{x}{\Gamma(\alpha + 4)} - \frac{2.89636}{\Gamma(\alpha + 2)} \right) + 1 \]

\[A_0 = t^2 \left(\frac{2.03164}{\Gamma(\alpha + 1)} + t \left(102.956 \frac{t^4}{\Gamma(\alpha + 3)} + 202445. \frac{t^4}{\Gamma(\alpha + 7)} - 74796.1 \frac{t^3}{\Gamma(\alpha + 6)} + 13446.4 \frac{t^2}{\Gamma(\alpha + 5)} - 1361.86t \frac{t}{\Gamma(\alpha + 4)} - \frac{2.89636}{\Gamma(\alpha + 2)} \right) + 1 \right)^3 : \]

Figure 2: Absolute norm \(\| \text{exact} - y_{\text{chebyshev}} \| \) in case(ii) at \(\alpha = 2 \) for Example 1

Example 3.2: Let us consider the equation

\[y^\alpha + yy' = xsin(x^2) - 4x^2sin(x^2) + 2cos(x^2) \]

(8)

\(y(0) = 0, \quad y'(0) = 0. \quad 1 \leq \alpha \leq 2 \)

Exact solution at \(\alpha = 2 \) is \(y(x) = sin(x^2) \)

Solution According to Eq.5 we have

\[D^{\alpha}y(x) + Ry(x) + Ny(x) = g(x) \]

where \(R = 0, \quad Ny = yy' \) and \(g(x) = xsin(x^2) - 4x^2sin(x^2) + 2cos(x^2) \).

in addition, \(F(y) = Ny = yy' \), the Adomain polynomials are,

\[A_0 = y_0y' \]

\[A_1 = y_1y_0^2 + y_0y_1^2 \]

\[A_2 = y_2y_0^2 + y_1y_1^2 + y_0y_2^2 \]

\[A_3 = y_3y_0^2 + y_2y_1^2 + y_1y_2^2 + y_0y_3^2 \]

case(i): Now let M=8, since \(L^{-1} \) Riemann-Liouville fractional integral operator and the Taylor series of \(g(x) \) is
So, by Eq.2.3, we have

\[y_0 = 2x^\alpha \left(\frac{1}{\Gamma(\alpha + 1)} + 6x^3 \left(\frac{1}{\Gamma(\alpha + 4)} + 280x^4 \left(\frac{9x}{\Gamma(\alpha + 9)} - \frac{2}{\Gamma(\alpha + 8)} \right) - \frac{10x}{\Gamma(\alpha + 5)} \right) \right) \]

\[A_0 = \frac{1}{\Gamma(\alpha + 1)^2\Gamma(\alpha + 4)^2\Gamma(\alpha + 5)^2\Gamma(\alpha + 9)^2} \frac{1}{4t^{2\alpha - 1}}(\Gamma(\alpha + 4)\Gamma(\alpha + 5)\Gamma(\alpha + 8)\Gamma(\alpha + 9) + 6t^3\Gamma(\alpha + 1)(\Gamma(\alpha + 5)\Gamma(\alpha + 6)\Gamma(\alpha + 7)\Gamma(\alpha + 9) - \alpha t\Gamma(\alpha + 8)\Gamma(\alpha + 9))) ((\alpha + 3)\Gamma(\alpha + 5)\Gamma(\alpha + 8)\Gamma(\alpha + 9) + 10t\Gamma(\alpha + 4)(28t^3\Gamma(\alpha + 5)9(\alpha + 8)t\Gamma(\alpha + 8) - 2(\alpha + 7)\Gamma(\alpha + 9) - (\alpha + 4)\Gamma(\alpha + 8)\Gamma(\alpha + 9)))) \]

\[g(x) = 2 + 2x^3 - 5x^4 - \frac{4x^7}{3} + \frac{3x^8}{4} \]

Figure 3: Absolute norm \(\| \text{exact} - y_{\text{Taylor}} \| \) in case(i) at \(\alpha = 2 \) for Example 2

case(ii): Now let \(M=6 \), since \(L^{-1} \) Riemann-Liouville fractional integral operator and the Chebyshev polynomials of \(g(x) \) is

\[g(x) = 2.00062 - 0.0580807x + 0.874789x^2 - 2.811754665576511x^3 + 7.00329x^4 - 13.7887x^5 + 5.40309x^6 \]

The following figure shows the error curve.
CONCLUSION:

In this work, we have applied Adomian Decomposition method with Taylor series and Chebyshev polynomials. On applying the method to the examples with inhomogeneous source terms we can conclude from Fig. 1, Fig. 2, Fig. 3 and Fig. 4 that Chebyshev polynomial series representation of inhomogeneous source term produces better results than Taylor series expansion.

REFERENCES