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ABSTRACT 

The influence of Hall current effect on peristaltic transport of a conducting Bingham fluid 

with permeable walls by Adomian decomposition method is examined. The non linear partial 

differential equations that govern that model were simplified under assumptions of long wavelength 

and low Reynolds number. This model is suitable for the blood flow in the sense that erythrocytes 

region and the plasma regions can be described as plug flow and non-plug flow regions. The velocity 

field for the model of interest is solved by Adomian decomposition method. The pressure gradient, 

pressure rise, stream functions and frictional force are discussed with the help of graphs drawn for 

different parameters like Darcy number, Hall parameter, Hartmann number and Slip parameter. 

KEYWORDS: yield stress, frictional force, pressure gradient, pressure rise, stream functions and 

Adomian decomposition method. 

NOMENCLATURE 
b   : Amplitude 

c   :  Wave speed 

F    :  Frictional force  

m   :  Hall parameter 

M    :   Hartmann number  
Q   :  Time averaged flow rate 

eR   :  Reynolds number 

   : Wavelength 

i j    :  Stresses  

0   :  Yield stress. 

    :  Slip parameter 

p   :  Pressure rise 

aD   :  Darcy number.  
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INTRODUCTION 

Peristalsis is a series of wave-like muscle contractions that moves food to different 

processing stations in the digestive tract. The process of peristalsis begins in the esophagus when a 

bolus of food is swallowed. The strong wave-like motions of the smooth muscle in the esophagus 

carry the food to the stomach, where it is churned into a liquid mixture called chyme. Next, 

peristalsis continues in the small intestine where it mixes and shifts the chyme back and forth, 

allowing nutrients to be absorbed into the bloodstream through the small intestine walls. Peristalsis 

concludes in the large intestine where water from the undigested food material is absorbed into the 

bloodstream. Finally, the remaining waste products are excreted from the body. The mechanics of 

peristalsis has been examined by a number of investigators. Latham
1
 was probably the first to 

investigate the mechanism of peristalsis in relation to mechanical pumping. Fung and Yih
2
 presented 

a theoretical analysis of peristaltic transport primarily with inertia-free Newtonian flows driven by 

sinusoidal transverse waves of small amplitude. Investigation of peristaltic motion in connection 

with functions of different physiological systems such as the ureter, the gastro-intestinal tract, the 

small blood vessels and other glandular ducts was first made by Shapiro et al.
3
. 

The fluid mechanical description of the esophageal peristaltic transport with the help of two-

fluid model has been explained by Brasseur
4
. Bugliarello and Sevilla

5
 and Cockelet

6
 have 

experimentally shown that blood has a peripheral layer of plasma and a core region of suspension of 

all the erythrocytes when it flows through small blood vessels. Srivastava and Srivastava
7
 have 

investigated the problem of peristaltic transport of blood in a uniform and non-uniform geometries 

by considering blood as a two layered fluid model consisting of a central layer of suspension of all 

erythrocytes, etc assumed to be a Casson fluid, which is a yield stress fluid and a peripheral layer of 

plasma as a Newtonian fluid. Comparani and Mannucci
8
 have analyzed the flow of a Bingham fluid 

in contact with a Newtonian fluid in a channel. Electro-Kinetically driven peristaltic transport of 

viscoelastic physiological fluids through a finite length capillary analysed by Tripathi et al.
9
 . 

Vajravelu et al.
10
 studied the peristaltic pumping of a Casson fluid in an elastic tube. Rathod and 

Laxmi
11
 have studied the effects of heat transfer on the peristaltic MHD flow of a Bingham fluid 

through a porous medium in a channel. 

If a particle is at rest in presence of magnetic field, the field has no effect. Similarly, if the 

particle path is in the same direction as that of the magnetic field, there is no effect i.e. the particle 

motion will be undeflected. But if the particle path has a component normal to the direction of 

magnetic field, the particle will be deflected. In presence of magnetic field of large extent at right 
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angle to the direction of motion of a charged particle, the particle is deflected in a circular path. In 

addition to this deflection the particle experiences the electric field. The combined force acting on 

the particle is said to be Lorentz force. Conductivity normal to the magnetic field is reduced due to 

the free spiraling of electrons and ions about the magnetic lines of force before suffering collisions 

and a current is induced in direction normal to both the electric and magnetic fields. This 

phenomenon is called the Hall Effect. When the magnetic field is very strong the Hall Effect cannot 

be neglected. Hayat et al.
12

 have investigated the peristaltic flow of a Maxwell fluid including the 

Hall Effect through porous medium. Asghar et al.
13
 studied the effects of Hall current and heat 

transfer on flow due to a pull of eccentric rotating disk. The effect of Hall currents on interaction of 

pulsatile and peristaltic transport induced flows of a particle fluid suspension that had been examined 

by Gad
14
. Hussain et al.

15
 studied the Heat and mass transfer analysis in variabl eviscosity peristaltic 

flow with Hall current and ion slip. Ellahi et al.
16
 examined theoretically the peristaltic flow of 

Jeffrey fluid in a non-uniform rectangular duct under the effects of Hall and ion slip. Hall effects on 

peristalsis of boron nitride-ethylene glycol nanofluid with temperature dependent thermal 

conductivity investigated by Abbasi et al.
17
. 

With the above discussion in mind, the purpose of the present investigation is to analyse the 

Hall current effects on peristaltic transport of a conducting Bingham fluid with permeable walls by 

Adomian decomposition method under the assumptions of long wavelength and low Reynolds 

number. The expressions for the velocity field and pressure gradient are obtained analytically. The 

impact of all the physical parameters of interest is taken into consideration with the help of graphs. 

MATHEMATICAL FORMULATION 

Consider the peristaltic pumping of a conducting Bingham fluid in a channel with permeable 

walls, under long wavelength and low Reynolds number assumptions. A longitudinal train of 

progressive sinusoidal waves takes place on the upper and lower walls of the channel. We assume 

that a uniform magnetic field strength 0B is applied. For simplicity, we restrict our discussion to the 

half-width of the channel as shown in the figure.1. The region between 0y  and 
0y y is called plug 

flow region. In the plug flow region 
0y x  .  In the region between 

0y y  and y H , 
0y x  . The 

wall deformation is given by  

2
( , ) sin ( )H X t a b x ct




                                                                                                                (1) 

where b  is the amplitude,   the wavelength and c  is the wave speed. Under the assumptions 

that the channel length is an integral multiple of the wavelength   and the pressure difference across 
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the ends of the channel is a constant, the flow becomes steady in the wave frame ( , )x y  moving with 

velocity c  away from the fixed (laboratory) frame ( , )X Y  .The transformation between these two 

frames is given by 

, , ( , ) ( , ) ( , ) ( , )x X ct y Y u x y U X ct Y and w x y W X ct Y                                                                        (2) 

Where U  and W   are velocity components in the laboratory frame and u  and w are velocity 

components in the wave frame. In the many physiological situations it is proved experimentally that 

the Reynolds number of the flow is very small. So, we assume that the wavelength is infinite. So the 

flow is of Poiseuille type at each local cross - section. 

 

Fig. 1. The Physical model 

The equations governing the flow in wave frame are given by 

0.
u w

x y

 
 

 
                                                                                                                                 (3)                                                                                

 
2

0

2
( ).

1

xx y xu u u p B
u w u c mw

mt x y x x y

  

      

                  
                                                            (4)                    

2

0

2
( ( )).

1

x y y yw w w p B
u w w m u c

mt x y y x y

  

      

                 
                                                             (5)     

Where 0B
m

en


   is the hall parameter, e-Electron charge, n-number density of electrons and  

i j  

denote the stresses. For the Bingham plastic these are strains through the constitutive model, 

 
.

.

y
ij i j


  



 
 

  
 
   

for  
0  and,                                                                                                   (6)        

.
0i j i j             for        

0.                                                                                                (7)               
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Where 
.

i j  is the rate of strain tensor,  

.
,

uu ji
i j x xj i




 
 

                                                                                                                          (8)       

1

2
i j i j     and 

2 22. . .1
.

2

u w u w
i j i j x y y x

  
       

        
        

                                                        (9) 

0x y

u

y
 


 


  for  
0   ,                                                                                                    

0x y    for  
0  .                            

Introducing the non-dimensional quantities 

2

0 0
0 0

0 2

, , , , , , , , , ,

, Re , , , ,x x x y y yxx xy yy

x y u w pa ct H b a y
x y u w p t h y

a c c c a a a

ca k a a
M aB Da

a c c c


 

     

  
     

    

         

     

 

Into equations (3) to (5), we get (dropping the bars) 

0
u w

x y

 
 

 
                                                                                                                               (10) 

 
2

2

2
Re 1

1

y xx xu u p M
u w u m w

x y x x y m


  

    
        

      
                                                      (11) 

 
2

3 2

2
Re ( 1)

1

x y y yw w p M
u w w m u

x y y x y m

 
   

    
        

      
                                                        (12) 

where 

.
0

. i ji j


  



 
  
 
 

 for 0                                                                                                             (13) 

.

0i ji j     for   0                                                                                                                (14) 

. .
2

x y y x

u u

y x
  

 
  

 
                                                                                                                   (15) 

.

2x x

u

x
 





,    

.

2y y

w

y
 





                                                                                                           (16) 

2 22
.

2 22
u w u w

x y y x
  

        
                  

                                                                                        (17) 
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2 2 2

x y xx                                                                                                                             (18)      

Under the assumptions of long wavelength and low Reynolds number, the equations (11) to (12) 

reduce to 

 
2

2
0 1

1

y xp M
u

x y m


    

  
                                                                                                         (19)                                                                                

0
p

y


 


                                                                                                                                    (20) 

0x y

u

y
 


 


  for  0                                                                                                                (21) 

0x y    for  0                                                                                                                       (22) 

Here 0  is the yield stress. 

Here equation (20) indicates that p  is independent of y and depends only upon x . Therefore, Eq. 

(19), can be rewritten as 

 
2 2

2 2
1

1

u dp M
u

y dx m


  

 
                                                                                                                (23)                

The non-dimensional boundary conditions are  

0

u

y






 at  0y                                                                                                                          (24) 

1
Da u

u
y


  


  at   y h                                                                                                            (25) 

Where  is slip parameter and 
0  is the yield stress. 

The volume flux q through each cross section in the wave frame is given by  

0

00

y h

p

y

q u dy udy                                                                                                                            (26) 

The instantaneous volume flow rate ( , )Q X t in the laboratory frame between the centre line and the 

wall is 

 
0 0

( , ) 1

H h

Q X t Udy u dy q h     
                                                                                                    

(27) 
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SOLUTION OF THE PROBLEM 

For the solution of Eq. (23), we use Adomian decomposition method, we write Eq. (23) in 

operator form 

 
2 2

2 21 1
y y

M dp M
L u u

m dx m
  

 
                                                                                                          (28) 

Where 
2

2
L

y





 Since L is a second-order differential operator, 1L  is a second-fold integration 

operator defined by: 

   1

0 0

. .

y y

L dydy    .                                                                                                                       (29) 

Operating with 1L , Eq. (28) becomes 

 
2 2

1 1

1 2 2 21 1

dp M M
u c c y L L u

dx m m

    
       

    
                                                                                  

(30) 

In which the function can be determined by utilizing the boundary conditions (24-25). By the 

standard Adomian decomposition method, one can write: 

0

n

n

u u




  

From eq. (30) 

2 2

0 1 2 21 2!

dp M y
u c c y

dx m

 
    

 
                                                                                                       (31)

 

 
2

1

1 2
,

1
n n

M
u L u

m



 


       0n  .                                                                                                      (32)  

from (31) and (32), we obtain 

     
2 3 4

22
1 1 2

1

2! 3! 4!

Ny Ny Nyc dp
u c N

N dx N

 
    

 
                                                                                     

(33) 

     
4 5 6

22
2 1 2

1

4! 5! 6!

Ny Ny Nyc dp
u c N

N dx N

 
    

 
                                                                                     

(34)                                                                        

   

 

 

 

2 2 2 1 2

22
1 2

1

2 ! 2 1 ! 2 !

n n n

n

Ny Ny Nyc dp
u c N

n N n dx N n

 

 
    

                                                                                

(35)        

 

using equations (31, 33, 34 and 35) in Eq. (32) we get 
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      22
1 2

1
cosh sinh cosh 1

c dp
u c Ny Ny N Ny

N dx N

 
     

 
 .                                                                  (36) where

2

21

M
N

m



 and subject to the boundary conditions (24) and (25) we obtain    

2 0 ,c 

                                                                                                                                   (37) 

   

   

    

2

0

1

20

2

1
1 cosh sinh

1

1
cosh sinh sinh cosh 1

Da dp
N y N N y

dx N
c

Da dp
N h N N y N h N N h

N dx N








   
      

   
              

   

                               

(38)

 
From equations (36, 37 and 38) we obtain 

 
2

2 2

[ ( )][ ]
1

[ ] [ ] [ ] [ ]

yN Da N Sinh N h ydp Cosh h y
N

dx Cosh h N Da N Sinh N y Cosh h N Da N Sinh N y
u

N N

 

 

  
  

    

                                   

(39)

 Taking in equation (39) 
0y y , we get the velocity in the plug flow region as 

pu  

 

 020

0 0

2 2

[ ( )][ ]
1

[ ] [ ] [ ] [ ]

y

p

N Da N Sinh N h ydp Cosh h y
N

dx Cosh h N Da N Sinh N y Cosh h N Da N Sinh N y
u

N N

 

 

  
         

 

The volume flux q through each cross section in the wave frame is given by 

 
0

0

1 2 3 4 0 5 6 7

0

y h

p

y

dp
q u dy udy h A A A A y A A A

dx
                                                                            (40) 

Where 

 0
1

1 03 2 2 2

1
2 [ ] [ ]

1 2
2 [ ]

2 [2 ]

Da N Cosh hN Tan N h y

A Tan
DaN Da N Cosh hN




 



 
  

 
  

.

 

2 2 2

2 2 [2 ]A Da N Cosh hN    
      

 

 0

3 3

[ [ ] [ ]] [ ]Log Cosh hN Da N Sinh N h y Sinh hN
A

DaN

   
  

  0 02

0
4 2
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N Da N Sinh N h y
N

Cosh hN Da N Sinh hy
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N

 



 



  

 0 0

5 2

[ ]Cosh hN h y
A

Da N

  


 

 0

6 4
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   

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0

0 0
7 2 2

[ ]
1

[ ] [ ]

Cosh Ny

Cosh hN Da N Sinh hy h y
A

N N






  
   

From Eq. (40) we have 

  
 

1 2 3 4 0 5

6 7

q h A A A A y Adp

dx A A

      



                                                                                            (41) 

The pressure rise and frictional force over one wavelength of the peristaltic are given by 

1

0

dp
p dx

dx
                                                                                                                                  (42) 

1

0

dp
F h dx

dx

 
  

 
                                                                                                                            (43) 

The above integrals numerically evaluated using the MATHEMATICA software. 

RESULTS AND DISCUSSION 

We have presented a set of Figures 2-16, which describe qualitatively the effects of various 

parameters of interest on flow quantities such as pressure gradient, pressure rise per wavelength, 

frictional force and stream functions. 

Figures 2–5 show the variations of the axial pressure gradient 
dp

dx
 with respect to the axial x  

which has oscillatory behavior in the whole range of the x -axis for all other parameters, Figure 2 

depicts the impact of Hall parameter m on axial pressure gradient. It shows that axial pressure 

gradient decreases in the channel. Influence of magnetic field parameter M on pressure gradient 

depicted in figure 3. Indeed, the axial pressure gradient increases by increase in M . In Figure 4, It 

can be notice that the axial pressure gradient reduces by increase in Da . Figure 5 depicts that 
dp

dx
is 

increases with the increases of . 

The pressure rise per wavelength p  against flow rate for different values Hall parameter m , 

Darcy number aD , Hartmann number M and slip parameter , can be observed from Figs.6-9. It is 

observed from the Fig.6, that, in the pumping region the pumping rate decreases by increasing Hall 

parameter m , while in the co-pumping region  the pumping rate increases by increasing Hall 

parameter m , For the free pumping case  there are no noticeable difference observed .The variation 

of pressure rise with time averaged flow rate Q  for different values of magnetic parameters M  is 

shown in Fig. 7, it is observed that the larger the magnetic parameter greater the pressure rise against 

which the pump works. For free pumping the flux Q  depends on magnetic field and it increases with 
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increasing magnetic parameter M . The variation of pressure rise with time averaged flow rate Q  for 

different values of Da  is shown in Fig. 8, for a given pressure rise the flux Q  depends on Darcy 

number and it decreases with increasing Darcy number Da . For free pumping the flux Q  is constant 

and it is independent of Da . The variation of pressure rise with time averaged flow rate Q  for 

different values of   is shown in Fig.9, it is observed that the longer the slip parameter, the greater 

the pressure rise against which the pump works. For a given flux Q ,  the pressure difference p  

increases with increasing slip parameter. From Figs. 10-13 it can be seen that frictional forces have 

opposite behavior as compared to the pressure rise. Formation of circular bolus by internally splitting 

of streamlines is known as trapping. The bolus moves forward through peristaltic wave with the 

same speed. Figure 14 indicate that for ascending values of Hall parameter m , the size of trapped 

bolus becomes larger. Figure 15 indicate indicate that for large value of Hartman number M  the size 

of trapped bolus increases. Figure 13 depicts that increasing Q  led to an increase in trapped bolus 

size 

 CONCLUSION 

This paper has presented the mathematical model that describes Hall current effects on 

peristaltic transport of a conducting Bingham fluid with permeable walls by Adomian decomposition 

method. The governing two dimensional equations have been simplified under the assumptions of 

low Reynolds number and long wavelength. The simplified equations are solved analytically using 

Adomian decomposition method. A set of graphs were plotted in order to analyze the effects of 

various physical parameters on these solutions. Key findings of present analysis are summarized 

below.  

 It is observed that pressure gradient decreases with the increase of m  and Da  while it increases by 

increasing M  and  .  

 It is observed that pressure rise decreases with the increase in Da  and m . However it increases 

with an increase in M and  .  

 Hartman number and Hall parameter have opposite effects on pressure gradient and pressure rise 

per wavelength.  

 It is observed that the friction force has an opposite character in comparison to the pressure rise.  

 Trapped bolus size enhances with increase in the Hall parameter m , Hartman number M . 
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Fig. 2. The variation of pressure rise with time-averaged flux for different values m for

0φ = 0.6, Da = 0.01, α = 0.1, M= 2, y = 0.2 and = 0.01  

0.0 0.2 0.4 0.6 0.8 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 dp

dx

x

 M=1

 M=2

M=3

 

Fig. 3. The variation of axial pressure gradient with M for  

0φ = 0.6, Da = 0.01, α = 0.1, = 2,  y = 0.2 and = 0.1m   
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Fig.4. The variation of axial pressure gradient with Da for 

0φ = 0.6, = 4, α = 0.1, =1,  y = 0.2 and = 0.01M m   
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Fig.5. The variation of axial pressure gradient with  for  

0φ = 0.6, = 2, Da = 0.01, =1,  y = 0.2 and = 0.01M m   
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Fig. 6. The variation of pressure rise with time-averaged flux for different values m for

0φ = 0.6, Da = 0.01, α = 0.1, M= 2, y = 0.2 and = 0.01  
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Fig. 10. The variation of pressure rise with time-averaged flux for different values M for 

0φ = 0.6, Da = 0.01, α = 0.1, = 2,  y = 0.2 and = 0.1m   
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Fig.8. The variation of pressure rise with time-averaged flux for different values Da for

0φ = 0.6, = 4, α = 0.1, =1,  y = 0.2 and = 0.01M m   
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Fig.9. The variation of pressure rise with time-averaged flux for different values  for

0φ = 0.6, = 2, Da = 0.01, =1,  y = 0.2 and = 0.01M m   
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Fig.10. The variation of frictional force with time-averaged flux for different values of m for

0φ = 0.6, = 2, Da = 0.01, = 0.1,  y = 0.2 and = 0.01M    
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Fig. 11. The variation of frictional force with time-averaged flux for different values of M for

0φ = 0.6, = 2, Da = 0.01, = 0.1,  y = 0.2 and = 0.1m    
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Fig. 12. The variation of frictional force with time-averaged flux for different values of 

Da for
 0φ = 0.6, =1, M= 4, = 0.1,  y = 0.2 and = 0.01m    
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Fig. 13. The variation of frictional force with time-averaged flux for different values of  for

0φ = 0.6, =1, M= 2, = 0.01,  y = 0.2 and = 0.01m Da   
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 (a)       (b)  

Fig. 14. Streamlines for different values of  m :         (a) m = 1 , (b) m = 1.1 . The other parameters chosen are          

0 0φ = 0.6, Da = 0.1, α = 0.1, M = 2, y = 0.01, Q = 2 and τ = 0.01

 

 

 

(a)                (b)  

Fig. 15. Streamlines for different values of M :        (a) M = 2 , (b) M = 2.1 . The other parameters chosen are   

0 0φ = 0.6, Da = 0.1, α = 0.1, m = 1, y = 0.1, Q = 2 and τ = 0.01
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(a)                 (b)  

Fig. 16. Streamlines for different values of Q : (a) Q = 2.5 , (b) Q = 3 . The other parameters chosen are    

0 0φ = 0.6, Da = 0.1, α = 0.1, m = 1, y = 0.1, M = 2 and τ = 0.01
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