Ahila N. et al., I]SRR 2018, 7(4), 112-118

Research article Available online www.ijsrr.org ISSN: 2279-0543

International Journal of Scientific Research and Reviews

On The Higher Degree Equation with Six Unknowns
X6 — ye _27% —10%T2" (W2 _ pz)

Anbuselvi R. ! and Ahila N.Z*

'Department of Mathematics, A. D. M. College for Women (Autonomous)
Nagapattinam — 600001, Tamil Nadu India.
?’Department of Mathematics, Thiru.Vi. Ka. Govt. Arts College, Tiruvarur- 610003,
Tamil Nadu, India

ABSTRACT

We presents non-zero solutions of the (2m+2)™ measure non-homogeneous Diophantine
equation in six unknowns represented by x° —y® —2z% =10*"T?™(w* — p®)in which m,nez*. In
exacting, unlike patterns of non-zero essential solutions of the on top of equation by the side of with
a small number of fascinating properties along with the solutions are exhibited.
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INTRODUCTION

Diophantine equations, homogeneous and non-homogeneous have aroused the interest of
various mathematicians since ancient times as can be seen from 2. The problem of decision all
integer solutions of a Diophantine equation with three or more variables and extent at least three, in
universal presents a good transaction of difficulties. There is huge universal hypothesis of
homogeneous quadratic equations with three variables * .Cubic equations in two variables drop into
the hypothesis of elliptic curves which is a very urbanized assumption but motionless an vital issue
of recent delve into ®**.A bunch is identified regarding equation in two variables in higher degrees.
For equations with extra three variables and scale at least three very little is known. It is value to
message that undesirability appears in equations, even possibly at degree four with rather small co-
efficient. It seems that greatly work has not been done in solving higher order Diophantine equations.

12-20

In a few higher order equations are considered for integral solutions. In this message a (2m+2)™"

degree non-homogeneous equation with Six variables represented by
x® —y® —27° =10°"T " (w* — p?) is considered and in particular a few interesting relations among

the solutions are presented.

NOTATIONS USED
e Ty, - Polygonal number of rank n with size m.

e P" - Pyramidal number of rank n with size m.

m

e Pr, - Pronic number of rank n

® QJna— Gnomonic number of rank n.

SO, - Stella Octangular number of rank n.

METHOD OF ANALYSIS

The Diophantine equation representing the higher degree equation with six unknowns under

consideration is

x® —y®—27° =10""T*"(W* — p?) (1)
Introduction of the transformation

X=U+V,y=U—-V,z=2uv, W=Uv+3, p=uv—3 (2)
In (1) leadsto u®+v*=10"T" (3)

Now, we solve (3) through different methods and thus obtain different patterns of solutions to (1).

IJSRR, 7(4) Oct. - Dec., 2018 Page 113



Ahila N. et al., I]SRR 2018, 7(4), 112-118

PATTERN-I

Assume T =T(a,b)=a%+b? (4)
Where a and b are non-zero distinct integers.
Write 10as  10=(3+1i) (3—1) (5)
Using (4) & (5) in (3) and applying the method of factorization, define
u+iv=B+i)"(@a+ib)" =(a, +if,) (y +15), say
Equating the real and imaginary parts, we have
u=ay—-po
V=a, 0+ by
Hence in view of (2), the corresponding solutions of (1) are given by
X=a,y=po+a,6+py
y=ay-po—-a0-py
z=2ayy — p0) (0 + Byy)
W= (ayy — pio) (a6 + By) +3
p= (a7 — Bo) 0+ By) -3

Where

a, =%[(3+i)” +(3-1)"]
1

B =?[(3+i)“ +(3-1)"]
1

ILLUSTRATION-I
Let n=2, m=3
Thus the corresponding non-zero distinct integral solutions of (1) are
x =x(a,b) =14a® + 6a’b — 42ab’® — 2b°
y =y(a,b) = 2a® — 42a°b — 6ab” +14b°
z = z2(a,b) = 2(8a® —18a°b — 24ab” + 6b*) (6a° + 24a°b —18ab® —8b°)
w=w(a,b) = (8a® —18a’b — 24ab’ + 6b*) (6a° + 24a’b —18ab* —8b°%) +3
p = p(a,b) = (8a® —18a°b — 24ab* + 6b°%) (6a° + 24a’b —18ab* —8b°) -3
T=T(a,b)=a’+b’

A few interesting properties observed are as follows:
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1) B(a,b),w(a,b)—& p(a,b)+3} formsa pythagoreantriple

2) X(1,b(b +1)) — 7y(Lb(b +1)) + 50SO0, 5., =350Pr,

3) x?(a,b) — y?(a,b) = 22(a,b) + w(a,b) — p(a,b) + 6

4) x(ad) - 7y(al) +T(al) = 301t, , —99

5) 10[7x(a,)) + y(a,1) +150(gn, —1)] is a cubical int eger

PATTERN-II
Instead of (5), write 10 as 10= (1+3i) (1-3i) (6)
Following the procedure similar to pattern-1 and performing a few calculations, the

corresponding non-zero distinct integral solution s of (1) are found be
X=a,y = f,0+a,0+ f,y
Y=,y =6 —a,0 - P,y
2=2a,y — P0) @6+ Byy)
W= (a,y — B,0)(a,0 + B,y) +3
p=(a,y— B,0) (a6 + B,y)—3
Where

a, = %[(1+ 3i)"+(@1-3i) "]

B, = %[(1+ 3i)"+(@1-3i) "]

ILLUSTRATION-II
Let n=2, m=5
The corresponding non-zero distinct integral solutions of (1) are
x = x(a,b) = —2a° + 20a°b? —10ab* — 70a’b +140a°b® —14b°
x = x(a,b) = —14a° +140a°b® — 70ab* +10a‘b — 20a°b® — 2b°
z =12(a,b) = 2(-8a° +80a’b* — 40ab* —30a’b + 60a’b*® —6b°)(6a° — 60a°b? +30ab*
—40a*b +80a’b® —8b°)
w=w(a,b) = (-8a° +80a’h? — 40ab* —30a"b + 60a°b*® — 6b°)(6a° — 60a’b? + 30ab*
—40a%b +80a%h® —8b°) + 3
p = p(a,b) = (-8a° +80a’b? —40ab* —30a’b + 60a’b® —6b°)(6a° —60a’b® + 30ab*
—40a°b +80a%h* —8b%) -3
T =T(ab)=a’+b?
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PROPERTIES:
1) w(a,b) + p(a,b) —2z(a,b) =0
2) 14x(1,b) — 2y(1,b) =1000SO, — 200b°
3) 2y(a,1) —14x(a) =1000t, . —80t, s,
PATTERN-I11I

Substituting m=0 in (3), we have

u?+v?=10" @)
Applying the method of factorization, the corresponding non-zero distinct integral solutions
of (7) are given by

1

Up ==[@B+1)"+(3-1)"]
; (®)
Vo = =[(3+1)" - (3-1)"]
2i
Taking m=1 in (3), we have
u?+v?=10"T 9)

Considering T =T(a,b)=a’+b* and employing the method of factorization, the
corresponding non-zero distinct integral solutions of (9) are given by

u, = au, —bv,

v, =au, +bv,

The repetition of the above process leads to the solutions of (3) represented by
1.
u, = E(lAu0 +Bv,)

1 .
v, = E(Bu0 +1Av,)

. A=(a+ib)" +(a—ib)"
B=(a+ib)" —(a—ib)"

Wher

Hence the corresponding non-zero distinct integral solutions of (1) are given by
X = %{(iAu0 + Bvy) + (Bu, +iAv,)}

y = %{(iAuo +Bv,) — (Bu, +iAv,)}

z = —%{(iAuO + BV, )(Bu, +iAv,)}

w = —%{(iAuo + Bv,)(Bu, +iAv,)}+3

b= —%{(iAuo + BV, )(BU, +iAV,)} -3

T =a”+b?
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CONCLUSION

In linear renovation (2), the variables w and p may also be represented by
w=3u+Vv,p=3u-V.
Applying the process parallel to that of patterns I to 11, other choices of essential solutions to

(1) are obtained. To terminate, as sexticequations are rich in multiplicity, one may regard as other

forms of sexticequations and rummage around for analogous properties.
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