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ABSTRACT 

In this paper,  a new ranking technique based on centroid ranking technique introduced for 

ordering of fuzzy numbers. First, we transform the fuzzy quantities as the cost, coefficients, supply 

and demands, into crisp quantities by using proposed ranking method and then by using the VAM 

algorithm to solve and obtain the initial basic feasible solution of the problem and optimal solution is 

obtained by Modified Distribution Method. Examples are furnished to validate the method. 
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INTRODUCTION 

 A Transportation problem is to find the shipping schedule that minimizes the transportation 

cost.  It was first developed by Hitchcock1.  In real time examples an uncertainty is involved in fixing 

the decision variables such as transportation cost, supply and demand. , Zadeh2 introduced the 

notation of fuzziness and it was restated  by Bellman and Zadeh3.  Zimmermann 4,5  helps to 

overcome this difficult.  Chanas et al 6 proposed Parametric programming Technique to solve Fuzzy 

transportation problem. This method not only identifies the solution, but also all other alternatives.  

Chanas and Kuchta7  converted  the given problem into a bicriterial TP with a crisp objective 

function and solved.  Liu Kao 8  used Extension principle to solve fuzzy transportation problem 

Verma et al 9 solved fuzzy transportation problem with  hyperbolic and exponential membership 

function by appling the fuzzy programming technique. T.F.Liang et al 10 used fuzzy Linear 

programming to solve interactive Multi objective transportation planning decision problems.. Nagoor 

Gani and K. Abdul Razak 11  have solved fuzzy transportation problem in two stages.  P. Pandian and 

G. Natrajan 12  has solved fuzzy transportation problem of trapezoidal numbers by introducing zero 

point method.  Defuzzification is a process that converts a fuzzy set or fuzzy number into a crisp 

value or number.  In 1981 R.R. Yager 13 procedure for ordering fuzzy subsets of the unit interval, 

S.H. Chen14  Ranking fuzzy numbers with maximizing set and minimizing set. On the centorids of 

fuzzy numbers by Wang15. P. Fortemps and M. Roubens16  introduced a ranking and defuzzification 

methods based on area compensation.  

S. Abbasbandy and T. Hajjari17  gave new approach for ranking of trapezoidal Fuzzy 

numbers .   C.H.Cheng18 developed a ranking technique by using distance method. A new method on 

ranking generalized trapezoidal fuzzy numbers based on centroid point and standard deviations by 

Chen and Chen 19 was derived. This paper is organized as follows: In section 2 some basic 

definitions which is required for our study are furnished.  In section 3 new ranking function is 

proposed.   In section 4 the proposed method is discussed and numerical examples are given. In 

section 5 deals with the conclusion. 

PRELIMINARIES 

2.1 Definition  A fuzzy set A~ of a universal set  U is defined by a membership function 

],1,0[::~ Uf A  

 

 

 



Purushothkumar M.K. et al, IJSRR 2018, 7(3), 638-650 
 

IJSRR, 7(3) July – Sep., 2018                                                                                                         Page 640 
 

2.2 Definition 

A fuzzy number is a convex fuzzy subset of the real line R and is completely defined by its 

membership function. Let A~  be a fuzzy number, whose membership function )(~ xf A can be defined 

as [4] 
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Where 0 < ߱ ≤ 1 is a constant, ],0[],[: 21~ aaf L
A and ],0[],[: 43~ aaf R

A are two 

strictly monotonically and continuous mapping R to closed interval [0,߱]. If ߱ = 1,then A~ is a 

normal fuzzy number; otherwise it is said to be a non normal fuzzy number. If the membership 

function )(~ xf A is piecewise linear, then A~ is referred to as a trapezoidal fuzzy number and is usually 

denoted by );,,,(~
4321 aaaaA  which is plotted in Fig 1.In particular, when 32 aa   ,the 

trapezoidal fuzzy number is reduced to a triangular fuzzy number denoted by );,,(~
431 aaaA  . 

So, triangular fuzzy numbers are special cases of trapezoidal fuzzy numbers. 

Since )(~ xf L
A and )(~ xf R

A are both strictly monotonically and continuous functions, their 

inverse functions exists and should also be continuous and strictly monotonical .Let 

],[],0[: 21~ aag L
A  and ],[],0[: 43~ aag R

A  be the inverse functions of )(~ xf L
A and )(~ xf R

A

respectively. Then )(~ yg L
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 Consider a  generalised fuzzy number );,,,(~
4321 aaaaA   whose membership function is 

defined as  
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In order to determine centriod point ))~(~),~(~( 00 AyAx  of a fuzzy number A~ ,and Wang[15] provided 

following centroid formulae: 
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Where )~(~
0 Ax and )~(~

0 Ay  is the centorid of the general trapezoidal fuzzy number 

 

   Suppose Triangular Fuzzy number );,,(~
431 aaaA   then  
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2.3 Properties of Triangular and Trapezoidal fuzzy numbers.  

Let ),,(~
321 aaaA  , ),,(~

321 bbbB   be two triangular fuzzy numbers, then the fuzzy numbers addition 

fuzzy numbers ,subtraction and fuzzy members multiplication are defined as follows. 

(i) B~A~   = ),,(),,( 321321 bbbaaa   = ),,( 332211 bababa   

(ii) B~A~   = ),,(),,( 321321 bbbaaa   = ),,( 132231 bababa   

(iii) B~A~   = ),,(),,( 321321 bbbaaa  = ),,( 33221 bababa   

Let ),,,(~
4321 aaaaA  , ),,,(~

4321 bbbbB   be two trapezoidal fuzzy numbers, then the fuzzy numbers 

addition fuzzy numbers ,subtraction and fuzzy members multiplication are defined as follows 

(iv) B~A~   = ),,,(),,,( 43214321 bbbbaaaa   = ),,,( 44332211 babababa   

(v) B~A~   = ),,,(),,,( 43214321 bbbbaaaa   = ),,,( 14233241 babababa   

(vi) B~A~   = ),,,(),,,( 43214321 bbbbaaaa  = ),,,( 4321 tttt  

        Where ),,,min( 441441111 babababat   

        ),,,min( 332332222 babababat   

        ),,,max( 332332222 babababat   

        ),,,max( 441441111 babababat   
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I. Proposed Ranking Method 

               An efficient approach for comparing the fuzzy numbers is by use of a ranking function 

,)(: RRFR   where )(RF  is a fuzzy numbers defined on set of real numbers, which maps each 

fuzzy number into a real number, where natural order exists. Wang [15] used a centroid based 

distance approach to rank fuzzy numbers. 

For trapezoidal fuzzy number );,,,(~
4321 aaaaA  , the ranking function is defined as  

   

   ℜ൫ܣሚ൯ = ටݔ଴෦
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For any two trapezoidal fuzzy numbers ),,,(~
4321 aaaaA   , ),,,(~

4321 bbbbB  then we have 

(i) A~   B~   ( A~ )  ( B~ ) 

(ii) A~   B~   ( A~ )  ( B~ ) 

(iii) A~  = B
~

  ( A~ ) = ( B~ ) 

 

II. Mathematical Formulation Of Fuzzy Transformation Problem 

The fuzzy transportation problems, in which a decision maker is uncertain about the precise 

value of transportation cost, availability and demand, can be formulated as follows 
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1j j
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Where m = total number of sources 

n = total number of destinations 

ia~  = the fuzzy availability of the product at ith source 
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ib~  = the fuzzy demand of the product at jth destination 

ijc~  = the fuzzy transportation cost for unit quantity of the product from i th source to j th destination 

ijx~  = the fuzzy quantity of the product that should be transported from ith source to jth destination to 

minimize the total fuzzy transportation cost 

 

m

1i ia~  = total fuzzy availability of the product 

 

n

1j jb~  = total fuzzy demand of the product 

  

m

1i

n

1j ijijx
~c~  = total fuzzy transportation cost 

If  


n

1j j
m

1i i b~a~  then the fuzzy transportation problem is said to be balanced fuzzy transportation 

problem, otherwise it is called unbalanced fuzzy transportation problem. 

 

4.1. Algorithm for Vogel Approximation method 

 

Step 1. Convert the given fuzzy parameters in to crisp values by using proposed  ranking  method. 

Step 2. If it is unbalanced convert the given fuzzy transportation problem to balanced 

transportation problem. 

Step 3. Determine the penalty cost for each row and column by subtracting the lowest cell cost in 

the row or column from the next cell cost in the same row or column. 

Step 4. Select the row or column with the highest penalty cost (breaking tiles arbitrarily or 

choosing the lowest cost cell). 

Step 5. Allocate as much as possible to the feasible cell with the lowest transportation cost in the 

row or column with the highest penalty cost. 

Step 6. Repeat 3 and 4 until all requirements have been meet. 

Step 7. Apply MODI method to get optimal solution.  

 

 

4.2 Numerical Examples 

EXAMPLE1. Consider the fuzzy transportation problem in the following table gives all the 

necessary information on the availability of supply to each warehouse, the requirement of each 

market and unit transportation cost (in Rs) from each warehouse to each market.  Here cost value, 

supplies and demands are triangular fuzzy numbers and  FAi and FRi are fuzzy supply and fuzzy 
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demand.  The given problem is balanced transportation problem. The fuzzy initial basic feasible 

solution is obtained by . 
Table 1: Numerical Example 1 

 FR1 FR2 FR3 FR4 Fuzzy Supply 

FA1 (1,5,9) (4,9,14) (9, 13,17) (1,2,3) (20,50,80) 

FA2 (9,11,13) (9,18,27) (18,20,22) (1,3,5) (25,50,75) 

FA3 (8,14,20) (10,15,20) (10,16,22) (2,7,12) (30,50,70) 

Fuzzy Demand (10,30,50) (20,40,60) (35,55,75) (10,25,40) (75,150,225) 

 

By using new ranking method of the triangular fuzzy numbers, 

  ℜ൫ܣሚ൯ = ටݔ଴෦
ଶ(ܣሚ) + ଴෦ݕ

ଶ(ܣሚ) 

Where )~(~
0 Ax  =  )(

3
1

431 aaa   and 
3

)~(~
0


Ay  

For taking 1 ,we have 

(1, 5,9) = 5.01 (9,11,13) = 11.01 (8,14,20) = 14 

(4,9,14) = 9.01 (9,18,27) = 18 (10,15,20) = 15 

(9,13,17) = 13 (18,20,22) = 20 (10,16,22) = 16 

(1,2,3) = 2.03 (1,3,5) =3.02  (2,7,12) = 7.01 

Rank of all Supply: (20,50,80) = 50, (25,50,75) = 50, (30,50,70) = 50 

Rank of all fuzzy Demand: (10,30,50) = 30, (20,40,60) = 40, (35,55,75) = 55,  

(10,25,40) = 25. 

Substitute these values in fuzzy transportation problem, we get the crisp transportation problem 

which is shown following table. 
Table 2: Tranportation Table -1 

 

 
FR1 FR2 FR3 FR4 Fuzzy Supply 

FA1 5.01 9.01 13 2.03 50 

FA2 11.01 18 20 3.02 50 

FA3 14 15 16 7.01 50 

Fuzzy Demand 30 40 55 25 150 

 

The fuzzy transportation problem is balanced.  After applying the  VAM procedure for Initial 

Basic Feasible solution, the allocations are as follows 

Minimum Transportation cost = ( 5.01 X 5) + (9.01 X 40 )+( 13 X 5) + (11.01 X 25 ) + 
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        ( 3.02 X 25 )+ (16 X 50) 

   

            =1601.2 

Using MODI method, the optimal solution is given by 
Table 3: Transportation Table-2 

The crisp value of the fuzzy transportation problem is: 

Total cost    = ( 5.01 X 5) + (9.01 X 40 )+( 13 X 5) + (11.01 X 25 ) +( 3.02 X 25 )+ (16 X 50) 

        =1601.2 

 

EXAMPLE2. 

Consider the fuzzy transportation problem in the following table gives all the necessary 

information on the availability of supply to each warehouse, the requirement of each market and unit 

transportation cost (in Rs) from each warehouse to each market.  Here cost value, supplies and 

demands are trapezoidal fuzzy numbers and  FAi and FRi are fuzzy supply and fuzzy demand.  The 

given problem is balanced transportation problem. The fuzzy initial basic feasible solution is 

obtained by . 

Table 4: Numerical Example 2 
 FR1 FR2 FR3 FR4 Fuzzy Supply 

FA1 (1, 2, 3, 4) (1, 3, 4, 6) (9, 11, 12, 14) (5, 7, 8, 11) (1, 6, 7, 12) 

FA2 (0, 1, 2, 4) (1, 0, 1, 2) (5, 6, 7, 8) (0, 1, 2, 3) (0, 1, 2, 3) 

FA3 (3, 5, 6, 8) (5, 8, 9, 12) (12, 15, 16, 19) (7, 9, 10, 12) (5, 10, 12, 17) 

Fuzzy Demand (5, 7, 8, 10) (1, 5, 6, 10) (1, 3, 4, 6) (1, 2, 3, 4)  

 

 

  
FR1 

 
FR2 

 
FR3 

 
FR4  

 
FA1 

 

5 
5.01 

40 
9.01 

5 
 

13 
 

-2.98 
2.03 
5.01 

u1 = 0 

 
FA2 

 

25 
11.01 

15.01 
18 

2.99 

19 
20 
1 

25 

3.02 
u2 = 6 

 
FA3 

 

8.01 
14 

5.99 

12.01 
15 

2.99 

50 

16 

0.02 
7.01 
6.99 

u3 = 3 

 

 

v1 = 5.01 

 

v2 = 9.01 v3 = 13 v4 = -2.98  
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By using new ranking method of the trapezoidal fuzzy numbers, 

  ℜ൫ܣሚ൯ = ටݔ଴෦
ଶ(ܣሚ) + ଴෦ݕ

ଶ(ܣሚ) 

 Where )~(~
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For taking 1 ,we have 

(1, 2, 3, 4) = 2.54 (0, 1, 2, 4) = 1.84 (3, 5, 6, 8) = 5.51 

(1, 3, 4, 6) = 3.52 (1, 0, 1, 2) = 0.65 (5, 8, 9, 12) = 8.51 

(9, 11, 12, 14) = 11.51 (5, 6, 7, 8) = 6.51 (12, 15, 16, 19) = 15.51 

(5, 7, 8, 11) = 7.82 (0, 1, 2, 3) = 1.56 (7, 9, 10, 12) = 9.51 

Rank of all Supply: (1, 6, 7, 12) = 6.51, (0, 1, 2, 3) = 1.56, (5, 10, 12, 17) = 11.01 

Rank of all fuzzy Demand: (5, 7, 8, 10) = 7.51, (1, 5, 6, 10) = 5.51, (1, 3, 4, 6) = 3.52,  

(1, 2, 3, 4) = 2.54. 

Substitute these values in fuzzy transportation problem; we get the crisp transportation problem 

which is shown following table. 

 
Table 5: Transportation Table-3 

 FR1 FR2 FR3 FR4 Fuzzy Supply 

FA1 2.54 3.52 11.51 7.82 6.51 

FA2 1.84 0.65 6.51 1.56 1.56 

FA3 5.51 8.51 15.51 9.51 11.01 

Fuzzy Demand 7.51 5.51 3.52 2.54 19.08 

 

The fuzzy transportation problem is balanced.  After applying the  VAM procedure for Initial 

Basic Feasible solution, the allocations are as follows 
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Table 6: Transportation Table-4 

  
FR1 

 
FR2 

 
FR3 

 
FR4 

 
Fuzzy 

Supply 
 

 
FA1 

 

1 

2.54 

5.51 

3.52 

 
11.51 

 
7.82 

 
6.51 

 
FA2 

 

 
1.84 

 
0.65 

 
6.51 

1.56 
1.56 

 
1.56 

 
FA3 

 

6.51 
5.51 

 
8.51 

3.52 

15.51 

0.98 

9.51 
 

11.01 

 
Fuzzy 

Demand 
 

7.51 5.51 3.52 2.54 19.08 

. 

Minimum Transportation cost = (2.54  1) + (3.52  5.51) + (1.56  1.56) + (5.51  6.51) + 

             (15.51  3.52) + (9.51  0.98) = 124.1539. 

 

which is not optimal solution. 

Using MODI method, the optimal solution is given by 
     Table7: Transportation Table-5 

  
FR1 

 
FR2 

 
FR3 

 
FR4 

 
FA1 

 

 
2.54 

5.51 

3.52 

1 

11.51 
 

7.82 

 
FA2 

 

 
1.84 

 
0.65 

1.56 

6.51 
1.56 

 
FA3 

 

7.51 

5.51 
 

8.51 
0.96 

15.51 

2.54 

9.51 
 

The above table satisfies the rim conditions with (m+n1) non negative allocations at 

independent positions. 

Thus the optimal allocation is 

12x 5.51,   13x 1,   23x  1.56,   31x  7.51,   33x  0.96,   34x  = 2.54 

The crisp value of the fuzzy transportation problem is: 

Total cost = (3.52  5.51) + (11.51  1) + (6.51  1.56) + (5.51  7.51) + (15.51  0.96) +  

 (9.51  2.54) 

    = 121.4859. 
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III. Conclusion 

 In this paper, an effective ordering of fuzzy numbers is introduced and applied for solving 

fuzzy transportation problem. More over fuzzy transportation problem   has been transformed into 

crisp transportation problem using ranking method. It is easy to understand and compute since it 

follows the step of crisp transportation problem.  Numerical examples validate the effectiveness of 

the proposed method. 
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