
R. Chinnadurai et al, IJSRR 2018, 7(3), 563-569 

 IJSRR, 7(3) July – Sep., 2018                                                                                                         Page 563 

Research article             Available online www.ijsrr.org         ISSN: 2279–0543 
 

International Journal of Scientific Research and Reviews 

 

Bayesian Analysis to the Detection of Outliers in an Autoregressive 

Model with Exponential White Noise 
 

R. Chinnadurai
1*

and P. ARUMUGAM
 2
 

 

  
1
Department of Statistics, Manonmaniam Sundranar University, 

Tirunelveli, Tamil Nadu, India 

 
2
 Department of Statistics, Annamalai University, Tamil Nadu, India 

Email:aru_stat1976@hotmail.com 

 

ABSTRACT 

In this paper, we develop a Model to detect the presence of outliers in an autoregressive 

model with exponential white noise through the Bayesian methodology. The developed model is 

illustrated with a simulation by adopting Gibbs sampling. 
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INTRODUCTION    

  The concept of outliers in a data set is considered to be as the subset of statistics. To quote 
6
 

in almost every true series of observations some are found ,which differ so much from the other as to 

indicate some abnormal source of ever not contemplated  in the theoretical discussions, and the 

introduction of which in the investigates can only serve  to perplex and  mislead the inquirer. Barnet 

and Lewis
2
 pointed out that even before the development of formal statistical method argument raged 

over whether, and an what basis, we should discard observations from a set of data as the grounds 

that they are unrepresentative, ‟spurious‟, or „mavericks‟ or „rogues‟. But it is now evident that 

outliers do not inevitably „perplex‟ or mislead; they are not necessarily „bad‟ or „erroneous‟. 

According to Barnet and Lewis
2
. We shall define outliers in a set of data to be an observation (subset 

of observations) which appears to be inconsistent with remainder of that set of data.    

  Abraham and Box
1
 rightly pointed out that the time series often contain discrepant 

observations, it is appropriate to employ models which reflect this fact. In a different context, Dixon
4, 

8
,suggested set- ups in which a small probability α  exists that any observation is bad. In applications 

we are frequently faced with time series data which, for a variety of different reasons, have 

characteristics not compatible with the usual assumptions of linearity or/and Gaussian errors. One of 

the many ways the assumption of linearity may fail is the presence of limit cycle (see for example 

Tong)
7
.Process with non-Gaussian white noise are useful for modeling a wide range of phenomena 

that do most support negative values or have a highly skewed distribution. 

  In this paper we represent the problem of detecting outliers in an autoregressive model with 

an exponential white noise, which is a very special case of the general autoregressive model for non-

negative variables. Due to the nature of the model considered, the explicit Bayesian solutions are 

difficult to reach. We analyse a simple model to highlight the sort of problems that arise. However, 

contrary to classical analysis, Bayesian methodology can be applied with success through the use of 

Gibbs sampler. The paper is organized as follows: the AR (p) model with exponential white noise 

along with aberrant innovation is specified, the Bayesians Inference and detection of the outliers for 

this model. An exact analysis, although possible to perform, becomes quite demanding 

computationally due to the fact that we are in the presence of a constrained parameter model. 

Integration needed to perform Bayesian analysis cannot be calculated since an explicit form for the 

support of the posterior distribution is difficult to get, particularly for large sample sizes. Hence, we 

suggest unrigs Gibbs sampling to obtain samples from the posterior distribution. We conduct a 

simulation study to compare the performance of the new model developed. 
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SPECIFICATION OF MODEL 

  The p
th

 order autoregressive aberrant innovation model may be defined as  

     ,aδxBy
tt

T

t
   (1) 

Where B
T
 = (yt-1, … yt-p), 

T 
= (1, 2 … p), yt =1 if there is an aberrant innovation at t and xt =0 

otherwise and at are independent exponentially distributed white noise with 

pdf      yαeαy;fa
0,

αy

t 


 I  

  The parameters , δ  and α are unknown. We also define y
T
=(y1, y2..... yn) as a vector of r 

unities and (n-r) zero where r and hence x are unknown. 

  Assuming x to be known, Fox
5
 considered a likelihood ratio criterion for this setup of the 

autoregressive model defined. The observations yt are assumed to be deviations from the mean 

and in the case when the mean is unknown we can include that also in the expression for the 

likelihood and often to a sufficient approximations we can take 
t

y as the deviations from the 

sample mean.  

  Due to the practical limitation, the First order autoregressive model is to be considered, 

the model is given by  

yt=  yt-1 + δ xt+ at  ,                                                               (2) 

Where yt and at are as defined as 

The parameter space for the model is  

  10,0δ0,ααδ,,,θ   r  

Stationary of the process is guaranteed by the restriction imposed on the parameter. 

The likelihood function based on y= (y1, y2, ……yn)is given by  
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Where 
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




n

2t

1tr,
yIN(r)  and      2,...nt0xδIyy:θU

1tr,1tt

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 The likelihood 

function is a step function in r, with breaks at the observed xt-1. 

BAYESIAN INFERENCE AND DETECTION OF OUTLIER 

  We assume that, a priori, the parameters  and r are independent, uniformly distributed 

in (0,1) and (0, β) respectively. For the parameter of the exponential error we assume a 

conjugate prior independent of (, r), of the form  

     hg,|α Ga fα,|δ exp~δα, , f,g,h> 0         (4) 

  This prior implies that the change in the error has a conditional mean proportional to the 

mean of the error. Hence the posterior distribution for  is 

       )(r*NδSSαexpα YθP
)(21
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With y(r) being the r
th

order statistic. The posterior mean will be obtained from the following  

       d yθp θgYθg E

n




         (6) 

For suitable choicer of g(.). 

  In the model, we are considering the parameter r affects particularly the parameter δ of 

the error term. Hence, for the problem we have in hand we consider k=3, with θ1 = (r, δ ), θ2= α 

and θ3= . The full conditional posterior densities are, respectively  

      α,y,|r p α,r,y,|δα,y,|δr,p p        (7) 

With  α,y,|rp defined by 
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r (y(k-1), y(k))k =1,2….nd , when nd is the number of distinct yt, t =1,2….n-1 and  rN
*

k
  the 

number of observations  
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When r=1, the q
th
observation being suspected, say    2

1q1q
Dy,y-d*


 y

q
  which is very 

like the regression estimate of  except that relevant quantities allowing for the effect of the outlier 

are subtracted from the numerator and denominator. 

It can be seen that p(/y) is a weighted average of scaled t distribution with mean , scaling 

factor SB
-1/2 

and degrees of freedom n-2. This distribution gives us all the information about. In 

particular, the posterior mean and variance are given by  
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NUMERICAL STUDY 

 We have generated 100 observations from the model ,5y
2

1

1-t ttt
axy   with different 

values for the parameter. The following table shows the mean and variance of the posterior 

distribution mean and variance 

Table 1: Posterior mean and variance of  /y 

α  E( /y) Var( /y) 

0.0 4.06 1.98 

0.001 4.56 1.02 

0.01 4.50 0.97 

0.03 4.31 0.90 

0.05 4.11 0.86 

 

CONCLUSION 

For conclusion we show the corresponding mean and variance when it is assumed that there 

are no outliers. Again it is found that the conclusion are not sensitive to moderate changes in α . 

However, as might be expected there is a dramatic difference between the assumption of no 

possibility of outliers ( α =0) and the assumption of some such probability even a very remote area 

( α =0.001). 
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