

Research Article

Available online www.ijsrr.org

International Journal of Scientific Research and Reviews

Quantitative Ethnobotanical study on traditional use of medicinal plants in Malda district of West Bengal, India

Mukherjee Sweta and Moktan Saurav*

Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata, West Bengal 700019, India *Email: smbot@caluniv.ac.in

ABSTRACT

The present communication reports the ethnobotanical study on traditional medicinal plants used by the indigenous communities. The study was carried out during 2018-2019 in Malda district of West Bengal. The study represents quantitative documentation of plants used for various aspects including ethnomedicine, ethnoveterinary, ethno-religious including food, fodder, etc. Fidelity level, use value and informant consensus factor were used to analyze the importance of medicinal plants. A total of 73 plant species under 61 genera and 29 families used ethnobotanically were documented. Plant family with highest number of medicinal plants use against various ailments was Leguminosae (14%) followed by Euphorbiaceae and Cucurbitaceae (10%). The habit group showed that shrubs constituted the highest percent of plants (34%) followed by herbs (31%) and leaves were the most used plant parts for medicine (34%) whereas paste form (26%) was the most popular formulation for preparation of ethnomedicine. The highest use value of 4.0 was reported against jaundice and the lowest against asthma (1.16). The highest ICF (1.0) value was obtained for rheumatism and the least ICF of 0.16 was linked with antiseptic. The traditional knowledge is confined only to the elderly and relative members of community and therefore, sincere effort on conservation and translation to the next generation is utmost necessary for the sustainable use of medicinal plants.

KEYWORDS: Ethnobotanical, medicinal plants, Malda

*CORRESPONDING AUTHOR

Saurav Moktan

Department of Botany, University of Calcutta, 35, B.C. Road,

Kolkata, West Bengal 700019, India

Mob No: +91 7384336285; Email: smbot@caluniv.ac.in

IJSRR, 10(2) April - June, 2021

ISSN: 2279-0543

INTRODUCTION

The relationship between man and the environment in general has never been static. But this is not the case with tribal or aboriginal communities who have remained almost undisturbed and static for ancient traditions and cultural heritage. Ethnobotany is a total natural and traditional relationship and the interrelations between man and his surrounding plants wealth ¹. Practical interests in ethnobotany go back to the beginning of civilization when people relied on plants for survival. Use of ethnobotanical information in medicinal plants research has gained considerable attention in segments of science community ². A large proportion of people from India and other continents are ecosystem people dependent on their healthy base of natural resources from their own surroundings for well being³. After proper scrutiny, this rich traditional knowledge in primitive societies indicates how very valuable this asset of academic as well as practical uses of the world's flora could benefit the mankind in several ways. Ethnobotanical informations represent best avenues for screening new economic plants for food, medicine etc, as well as for gene pool source for the development of agricultural and medicinal crops ⁴. The traditional knowledge has been known to be transferred verbally from generation to generation ⁵. Every year new species are being discovered or are being rediscovered for modern world to preserve and gather all information on the utility of these plants. So, the efficacy of such uses of plants is yet to be scientifically verified. It is still unknown to what degree the survivability of indigenous people is jeopardized by the loss of either plant species or knowledge about their services ⁶. There are over 705 different tribal and other ethnic groups in India constituting about 8.6 percent of India's population and among them 89.97% lives in the rural areas ⁷. Over 50% of all pharmaceutical drugs could be traced back to ethnomedicine ⁸.

Of the 252 drugs considered as basic and essential by the WHO, 11% are exclusively of plant origin and significant number are synthetic drugs obtained from natural precursors ⁹.

Practices of ethnobotanical knowledge are widespread in India, China, Japan, Pakistan, Sri Lanka, Thailand, and Korea ¹⁰. Reports on ethnobotanical uses of plants from West Bengal region of India have been carried out by several workers ^{11,12,13,14,15,16,17,18,19}. The present study was initiated with an aim to identify ethnobotanical knowledge from the ethnic communities residing in remote villages and gram Panchayats in blocks of Malda district of West Bengal.

MATERIAL AND METHODS

Study Area

The present investigation was focused on the Malda district of the state of West Bengal, India. The district lies between 24° 40′ 20″ N to 25°32′ 08″ N Latitude and 87° 45′ 50″ E to 88° 28′

10" E Longitude, covering an area of 3733 sq km. The area is surrounded by Bangladesh and South Dinajpur in the east, Jharkhand state in the west, Uttar Dinajpur in the north and Murshidabad in the South (Fig 1). The district can be divided into two broad zones namely '*Rarh*' and '*Barind*' region. 88% of tribal population concentrated in Barind area are comprised in four blocks- Gajole, Bamongola, Habibpur and Old Malda ²⁰. The district comprised mainly 38 sub-communities, of which Santala, Oraon, Mores, Mundas and Malpaharias are main tribal communities.

The climate of the study area remains hot and sultry during summer with annual rainfall of about 1453.1mm. The district has floristically rich vegetation; river, ponds, marshy land etc. are good habitats for the wetland undergrowth.

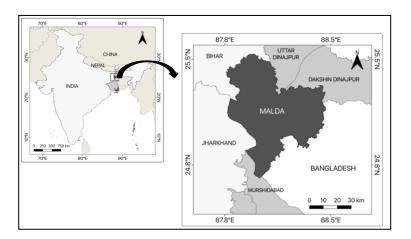


Fig 1. Map showing study area

Data collection

For ethnobotanical data collection, several villages within the blocks namely Old Malda (25.0557° N, 88.1365° E, 288 sq km); English Bazar (25.0108° N, 88.1411° E, 251.85 sq km), Habibpur (23.1698° N, 88.5160° E, 397.10 sq km) and Bamongola (25.1656° N, 88.3367° E, 206 sq km) that are inhabited by communities like Pahari, Munda, Murmu, Hansda, Oraon and Soren were surveyed.

Ethnobotanical informations were collected from the traditional medicine practitioners during the period 2018-2019. Resource persons or traditional healers were identified to collect the ethnomedicinal information through direct interviews/oral conversations. Field datasheet was prepared to record plant details with ethnomedicinal information gathered from traditional healers. Information on local name of plant, plant part used for curing, mode of preparations, any other plants/agents used as ingredients, modes of administration etc. were recorded for each collected ethnomedicinal data. Based on this information obtained from the indigenous people in the study

area, the plants were classified into different categories- ethnomedicinal, economical, ethnoveterinary, ethnoreligious, including plants used daily for several purposes like food, fodder, etc.

Quantitative Data Analysis

Fidelity level

The fidelity level (FL), the percentage of informants claiming the use of a certain plants species for the same major purpose, was calculated for the most frequently reported diseases or ailments ²¹.

$$FL (\%) = (Np / N) \times 100$$

Where, Np is the number of informants that claim a use of a plant species to treat a particular disease, N is the number of informants that uses the plants as a medicine to treat any given disease.

Use Value

The use value (UV), of a certain plant species was calculated ²².

$$UV = \sum U/N$$

Where U is the total number of used citation by all informants for a given species and N is the total number of informants. The UV is helpful in determining the plants with highest use (most frequently indicated) in the treatment of an ailment.

Informant consensus factor (ICF)

The informant consensus factor was used to see if there was agreement in the use of plants in the ailment categories between the plant users in study area. The ICF was calculated using the formula ²³.

$$ICF = Nur - Nt/(Nur - 1)$$

Where Nur refers to the number of use-reports for a particular ailment category and Nt refers to the number of taxa used for particular ailment category by all the informants. The product of this factor ranges from 0 to 1.

RESULTS

The present study documented 73 plant species under 61 genera and 29 families used ethnobotanically in several villages of Malda district. For each species, botanical name, family, local name, parts used, mode of use and its purpose are provided in detail (Table 1). Traditional healers and ethnomedicine practitioners have been using these plants for different purposes like for curing diseases related to fever, diabetes, cough and cold, stomach ache, wounds and injury, headache, diarrhoea and dysentery, small pox, snake bites including economic uses, veterinary purposes as well

as food. The informations from the traditional healers and the native people in the study area were reported and the use of plant species have been chiefly segregated into 5 categories as medicinal (66%), religious (10%), economical use (5%), veterinary (2%) and as food (17%).

The growth form of the plants used ethnobotanically includes shrubs (34%) that were found to be used mostly followed by herbs (31%), trees (25%) and climbers (10%) (Fig 2).

The major family of the taxa that were reported include Leguminosae (10 species), Euphorbiaceae and Cucurbitaceae (7 spp), Lamiaceae (5 spp), Apocynaceae, Acanthaceae, Moraceae (4 spp), Rutaceae, Malvaceae (3 spp), Combretaceae, Apiaceae, Plantaginaceae, Arecaceae, Solanaceae, Poaceae (2 spp) and the remaining 14 family with single species each (Fig 3).

The plant parts that were used in traditional medicine include mostly leaves (34%) followed by fruit (23%), root and rhizome (15%), whole plants (9%), stem (7%), bark and latex (6%), flower and inflorescence (2%) and stem (1%) (Fig 4). The native people employed various approaches for mode of preparation of traditional formulations as medicine for different diseases and ailments. The principal mode of remedy preparation documented mostly showed the use of raw plants (33%), paste form (26%), decoction (21%), cooked (11%) and as dried parts (9%) (Fig 5). Different routes of administration were applied for medicinal plants that include orally, external applications as paste, herbal drinks etc. The dosage use by the local people include units of measurement such as pinch, finger length, numbers and spoon to quantify the amount of dose. As per the respondents, the prescription for the dose was different for different age group and gender. Decrease in the signs and symptoms of ailments, fading out of disease were some observations for determining the amount of dose with response to disease recovery. It was also observed that due to traditional herbal medicine preparation, there was no any adverse effect from the remedy adopted.

The percentage of plant species that were used ethno-medicinally against different ailments has been documented and it was observed that 22% were used against relieving pain, 18% against diarrhea and dysentery, stomach problems (15%), cough and asthma (13%), diabetes (11%), for wounds and injury (9%), for treating fever (7%) and skin related problems (5%). Besides these common ailments, the practice of ethnomedicine was also carried out against other health issues like jaundice, kala azar, dental issues, conjunctivitis and female related problems.

Table 1. Plants and their uses as recorded from the study area

Plant Name	Family	Local Name	Parts	Mode of Use	Purpose
			Used		
Abrus precatorius L.	Leguminosae	Karmeck	Leaf	Applied on pain	Reduce and cures pain
				along with warm	
				kerosene	
Acacia catechu (L.f.)	Leguminosae	Khayer	Bark	Bark paste to be	Effective in menstrual
Willd.				consumed	complaints, dysentery and
					diarrhea
Aegle marmelos (L.)	Rutaceae	Bael	Fruit	Consumed	Food; against
Correa					constipation, diabetes,
					urinary diseases
Andrographis	Acanthaceae	Kalmegh	Leaf	Extract is consumed,	Cures cough and cold;
paniculata			and	Paste to be applied	Reduce the pain
(Burm.f.)Nees			Root		
Annona squamosa L.	Annonaceae	Ata,	Fruit	Consumed	As food
		Madargom			
Argemone mexicana	Papaveraceae	Sialkata	Root	Paste of root is	Used to treat
L.				applied on affected	inflammation
				area	
Artocarpus lacucha	Moraceae	Dahu	Fruit	Consumed	As food; effective against
BuchHam.		(Bonkathal)			ameobic dysentry
Azadirachta indica A.	Meliaceae	Neem	Stem,	Outer layer of stem is	As toothpaste;
Juss.			Leaf	removed and	food and antiseptic
				consumed raw;	
				Leaves are fried and	
				consumed	
Bacopa monnieri	Plantaginaceae	Brahmi	Leaf	Decoction is	Used as brain tonic;
(L.)Wettst.			with	consumed	effective against asthma
			young		
			shoot		
Benincasa hispida	Cucurbitaceae	Kumdo	Fruit	Consumed	As food
(Thunb.) Cogn.					
Caesalpinia bonduc	Leguminosae	Gabhin	Fruit,	A small part inside	Reduces and cure pain in
(L.) Roxb.			Leaf,	the fruit is grounded	stomach; Effective in case
			Seed	and consumed, leaf	of dysentery among calf
				paste is consumed too	
Cajanus cajan (L.)	Leguminosae	Arhar	Leaf	Make a paste and	Effective in case of
Mill.				consumed	jaundice

Calotropis procera	Apocynaceae	Akauna	The	Gum is applied on the	It reduces pain
(Aiton) Dryand.	ripocynaceae	7 Kadila	exudat	painful areas	it reduces pain
(Alton) Diyand.				paintul aleas	
			es		
			from		
			stem		
Cardiospermum	Sapindaceae	Fokafuio	Leaf,	Fried with oil and	Rashes heals rapidly,
halicacabum L.			Roots	applied on pox's	reduce gout's pain
				rashes &	
				Tied around the neck	
				and waist;	
				Grounded roots	
				applied on pain	
Carica papaya L.	Caricaceae	Popita, Pepe	Fruit,	Consumed raw and	Food; Latex is effective
			Latex	sometimes after	in eczyma
				cooking, Fruit and	
				latex are used as raw	
Cassia sp.	Leguminosae	Chakauda	Leaf	Fried and consumed	As vegetable
Cassia fistula L.	Leguminosae	Nurui	Fruit	To be consumed	To reduce fever in Pig
Catharanthus roseus	Apocynaceae	Nayantara	Leaf	Extract of leaves	Used to cure diabetes
(L.) G.Don				along with the leaves	
				of Andrographis	
				paniculata is taken in	
				empty stomach	
Centella asiatica (L.)	Apiaceae	Thankuni	Leaf	Decoction	Used to cure amoeboic
Urb.					dysentery and reduce pain
					during stomachache
Citrus maxima	Rutaceae	Dabha	Dried	Grounded and paste	Effective and cure cracked
(Burm.) Merr.			exocar	with dried faecal	scalp; in case of injury
			p, Fruit	remnant of Tortoise	
				and mole rat's faecal	
				remnants applied on	
				cracked scalp of	
				infants; The exocarp	
				is to be used for	
				making paste and	
Clerodendrum	Lomination	Titbhat	W/l _r = 1 =	applied	Worshipped
	Lamiaceae	1 nonat	Whole	Dried stems are used	Worshipped as Lord
infortunatum L.			plant,		Shiva; Used as
			stem		toothbrush and as a fuel

					for cooking
Clerodendrum L.	Lamiaceae	Dhela	Fruit	Consumed	As food
Coccinia sp.	Cucurbitaceae	Kundri	Fruit,	Whole fruit is to be	As food,
			Leaf	consumed;	reduces fever, soft
				Leaf grounded and	premature scalp of infant
				paste and applied on	gets hardened
				infant scalp	
Coccinia grandis L.	Cucurbitaceae	Telkuch	Root	Root decoction is	Used to treat rheumatism
				pasted with fruit pills	
				and consumed	
Cocos nucifera L.	Arecaceae	Narkel	Fruit	Tender fruit water is	Effective in kidney stone
				to be consumed and	dissolver and to remove
				applied over spot	the skin's spot
Colocasia esculenta	Araceae	Man-kachu	Leaf	Decoction or	Effective in cough and
(L.) Schott				sometimes cooked	cold
				and consumed	
Combretum indicum	Combretaceae	Myerju baha	Bark	Made paste and to be	Reduces fever
(L.) DeFilipps				consumed	
Coriandrum sativum	Apiaceae	Dhone pata	Whole	Whole plant and	Used to stop vomiting
L.			plant	Zinger to be pasted	
				and mixed and then	
				to be consumed	
Croton bonplandianus	Euphorbiaceae	Bontulsi	Leaf	The extract of the leaf	In case of small cut
Baill.				is to be applied	
Cucurbita maxima	Cucurbitaceae	Alagnori	Root	Make a paste of roots	To reduce stomachache
Duchesne					
Curcuma longa L.	Zingiberaceae	Jangli hardi	Rhizo	Consumed as raw or	Effective in blood
			me	sometimes after	diseases, appetizer,
				cooking; the paste	Antiseptic & carminative
				form is to be applied	
Cuscuta reflexa Roxb.	Convolvulaceae	Swarnalata	Roots	2-3 Cuscuta roots and	Reduces pain during
				Madhuca longifolia	Arthiritis
				roots to be tied on the	
				knee	
Cynodon dactylon (L.)	Poaceae	Dubba	Leafy	Paste sometimes	Effective in vomiting,
Pers.			shoot,	consumed and	dysentery, liver cirrhosis
			Whole	sometimes applied as	and to stop nose bleeding
			plant	raw, Leaf paste	and any small cut
				applied on cut or	bleeding
				applied off cut of	biccuing

Datura stramonium L.	Solanaceae	Dhutra	Root,	Paste mixed with	In case of stomachache,
			Leaf	pepper and	in order to reduce pain in
				consumed; Grounded	the ear
				paste applied too	
Euphorbia hirta L.	Euphorbiaceae	Pusidudh	Root	Decoction to be	Effective in case of
				consumed	dysentery, colic pain
Euphorbia nivulia	Euphorbiaceae	Atkal	Whole	Worshipped; Juice	Mansha puja, reduce pain
BuchHam.			plant,	obtained after	in case of fracture in
			Leaf	extraction of leaf is to	Cow's leg
				be applied	
Euphorbia sp.	Euphorbiaceae	Monosa	Whole	Applied as raw on the	Worshipped;
			plant,	affected area; Make a	Effective in case of
			Latex,	paste and applied	eczyma, used as primary
			Leaf	over the area	aid against snake bite
Euphorbia neriifolia ia	Euphorbiaceae	Lonkoshir	Stem	The extracted stem	Reduce the pain of gout
L.				juice is to be applied	and increase the breast
					milk production
Ficus benghalensis L.	Moraceae	Baridari	Whole	Whole tree	Worshipped as lord
			tree		
Ficus racemosa L.	Moraceae	Dumur	Fruit	Decoction is taken	Useful for treatment of
					asthma
Ficus sycomorus L.	Moraceae	Dumur	Fruit	Consumed	As Food
Glycosmis pentaphylla	Rutaceae	Projo,	Leaf,	Paste made and	Cures old injury,
(Retz.) DC.		Ateshwar	Stem	applied; Dried stem is	Used as a toothbrush and
				to be used	also as fuel
Heliotropium indicum	Boraginaceae	Haatishur	Leaf,	Sterilized leaf is to	Effective against
L.			Whole	squeezed and drop is	conjunctivitis; to prevent
			plant	to be applied, extract	ear blocking
				applied too	
Hibiscus rosa-sinensis	Malvaceae	Atal joba	Flower	Flower	Used during Worship
L.					
Hygrophila auriculata	Acanthaceae	Kulekhara	Leaf	Decoction or	Effective against anemia,
(Schumach.)Heine			along	sometimes extract is	diarrhoea and diabetes
			with	consumed	
			young		
			1	l	I
			shoot		
Ichnocarpus	Apocynaceae	Goth	shoot Leaf	Grounded and paste	Effective during
Ichnocarpus frutescens (L.)W.T.	Apocynaceae	Goth		Grounded and paste with sugar is	Effective during stomachache

Jatropha	Euphorbiaceae	Varenda	Stem	Dried stem is used	Cures bleeding gums
pelargoniifolia					
Courbai					
Justicia adhatoda L.	Acanthaceae	Basak,	Leaf	Decoction	Prevent from constipation;
		Harbakos			treating stomachache,
					cough and cold
Justicia gendarussa	Acanthaceae	Bridhhadhar	Leaf	Decoction	Gives relief against
Burm. f.		ak			dysentery
Luffa acutangula	Cucurbitaceae	Duriojhingo	Fruit	Consumed	As food
(L.)Roxb.					
Mangifera indica L.	Anacardiaceae	Aam	Inflore	Make a paste	Astringent
			scence		
Mimosa pudica L.	Leguminosae	Lajjyabati	Root	Root decoction is	Used to treat leucorrhoea
				used	and dysentery
Momordica dioica	Cucurbitaceae	Birkarla	Fruit	Cooked	As food
Roxb. ex Willd.					
Moringa oleifera Lam.	Moringaceae	Munge,	Bark,	Dried bark kept in the	Snake repellant;
		Sojne	Leaf,	room; fried and	Reduces pain in legs and
			Fruit,	consumed;	arms; as vegetables;
			Roots	Paste prepared	Effective against
				mixing neem leaf,	headache, Reduce the
				Decoction is to be	pressure, effective against
				consumed	Kala azar
Musa paradisiaca L.	Musaceae	Kola	Stem	3-5 pieces of stem is	Used to cure diabetes
				taken and extract is	
				to be consumed	
Ocimum gratissimum	Lamiaceae	Ramtulsi	Leaf	Leaf extract to be	Prevent from common
L.				consumed	cold, cough, fever
Ocimum	Lamiaceae	Dimbutulsi	Leaf	Grounded paste	Reduce temperature
kilimandscharicum				applied on forehead	during fever
Gurke					
Ocimum tenuiflorum	Lamiaceae	Laltulsi	Whole	Whole plant	Worshipped
L.			plant		
Oryza sativa L.	Poaceae	Dhan	Inflore	Inflorescence	Lobal puja
			scence		
Pentapetes phoenicea	Malvaceae	Baribaha	Leaf	Paste	At the time of labour, it
L.					gives comfort
Phoenix dactylifera L.	Arecaceae	Khejur	Leaf	Dried leaf is used	In making mattresses

Phyllanthus emblica	Phyllanthaceae	Amla	Fruit	Consumed as raw	Reduce stomach
L.					problems, constipation
					and prevent from common
					cold
Psidium guajava L.	Myrtaceae	Eprisam	Fruit	Consumed	As raw fruit
Ricinus communis L.	Euphorbiaceae	Eradom	Leaf	Hot compression is to	After child delivery it
				be applied	comforts
Scoparia dulcis L.	Plantaginaceae	Ban dhane	Leaf	Extraction	Antidiabetic
Senna sophera L.	Leguminosae	Jhunjunia	Leaf,	Fried leaf is to be	As food, to reduce pain
			Root	consumed;	
				grounded roots	
				consumed too	
Sida rhombifolia L.	Malvaceae	Chipchirip	Leaf	Paste prepared and	Effective against
				applied on affected	Leucoderma
				area	
Solanum surattense	Solanaceae	Katabegun	Root,	Decoction	Used to treat Syphilis
Burm. f.			Leaf,		male and female, cough
			Fruit		and dental caries
Tabernaemontana	Apocynaceae	Tuabaha	Flower	Flower	Used during Worship
divaricata (L.) R.Br.					
ex Roem & Schult.					
Tamarindus indica L.	Leguminosae	Tentul	Fruit	Consumed by	To maintain homeostasis
				mixing with water	and control diabetes
Terminalia arjuna	Combretaceae	Arjun	Bark	Make a paste of the	Stops bleeding during
(Roxb. ex DC.)Wight				bark and consume	labour
& Arn.					
Trichosanthes	Cucurbitaceae	Jhinge	Fruit	Cooked & consumed	As food
cucumerina L.					
Vigna unguiculata (L.)	Leguminosae	Ghangra	Fruit	Cooked & consumed	As food
Walp.					

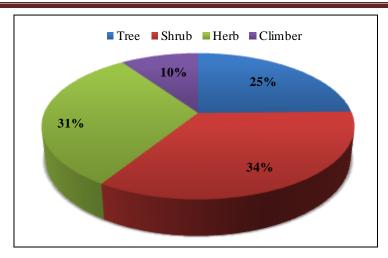


Fig 2. Growth form distribution of ethnomedicinal plants

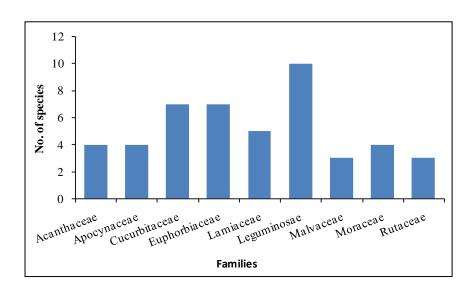


Fig 3. Representation of dominant families

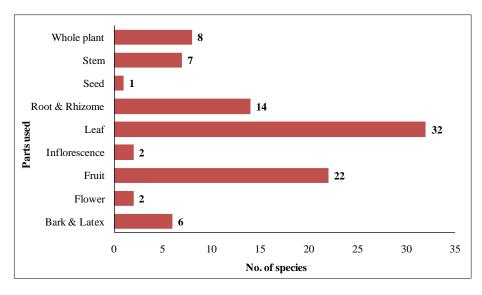


Fig 4. Plant parts used in ethnomedicine

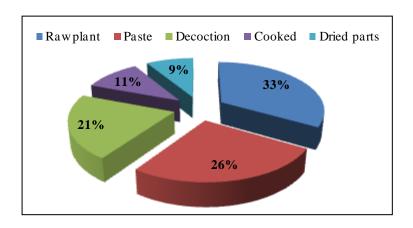


Fig 5. Mode of preparation of ethnomedicine

Quantitative Ethnobotany

The Fidelity level (FL) and Use value (UV) has been applied for some medicinal plant species Table 2. In the present investigation, the fidelity level of the reported medicinal plant varied from 22.43 to 83.33 and the UV also varied from 1.16 to 4. The highest FL value was calculated for *Hydrophila auriculata* (83.33) against anemia and the lowest value was quantitatively estimated for *Coccinia grandis* (22.43) against rheumatism.

Similarly, the highest UV score was calculated for *Cajanus cajan* (4.0) against jaundice and the lowest UV value was calculated for *Ficus racemosa* (1.16) against asthma. Base on the used value, the dominant taxa were *Cajanus cajan* (4.0), *Centella asiatica* (3.86), *Catharanthus roseus* (3.2), *Aegle marmelos* (3.16), and *Caesalpinia bonduc* (3.0) while the species that were least used were *Ficus racemosa* (1.16), *Justicia gendarussa* (1.2), *Euphorbia* sp. (1.41), *Moringa oleifera* (1.5), *Bacopa monieri* (1.65). The various purpose species were used include jaundice, amoebic dysentery, stomachache and diabetes while the species with the least use value was reported to be used against asthma.

The informant consensus factors have been calculated for each category (Table 3). The highest ICF (1.0) value was obtained for rheumatism followed by kidney related disease (0.91) and the least ICF of 0.16 and 0.79 was associated with antiseptic and stomach problems respectively.

Table 2. Fidelity level and Use value of different species

Plant species	Diseases	FL	UV
Cardiospermum halicacabum	Rashes	47.0	2.0
Jatropha pelargoniifolia	Gout	62.5	1.83
Acacia catechu	Dysentery and diarrhoea	70.88	1.91
Artocarpus lacucha	Amoebic dysentry	50.0	1.8
Bacopa monieri	Asthma	53.33	1.65
Caesalpinia bonduc	Stomachache	40.0	2.4
Centella asiatica	Amoebic dysentry	42.85	3.86
Curcuma longa	Antiseptic and carminative	36.33	2.6
Cajanus cajan	Jaundice	72.86	4.0
Catharanthus roseus	Diabetes	51.65	3.2
Aegle marmelos	Diabetes	62.46	3.16
Azadirachta indica	Antiseptic	37.56	1.83
Coccinia grandis	Rheumatism	22.43	1.66
Cocos nucifera	Kidney stone	33.33	2.1
Cuscuta reflexa	Arthritis	64.23	1.5
Euphorbia sp.	Snake bite	66.67	1.41
Ficus racemosa	Asthma	42.83	1.16
Hygrophila auriculata	Anemia	83.33	1.8
Justicia gendarussa	Dysentry	24.65	1.2
Moringa oleifera	Kala azar	43.32	1.5

Table 3. Informant consensus factor by diseases category in the study area

Disease category	No. of species	Used citation	ICF
Pain (gout, arthritis)	7	36	0.82
Female disease (menstrual complaints, labour pain)	4	20	0.84
Stomachache (indigestion, belly pain)	6	25	0.79
Kidney disease (kidney stone, urine disease)	2	13	0.91
Skin disease (eczema, rashes, scalp lesions)	2	8	0.85
Fever, cough & cold	4	27	0.88
Dysentry (amoebic dysentery, diarrhea)	7	42	0.85
Diabetes	5	23	0.81
Asthma	3	15	0.85
Rheumatism	1	7	1.0
Antiseptic and carminative	2	30	0.16

DISCUSSION

More than 30 different types of diseases and ailments were reported to be cured by ethnomedicinal plants in the study area. The most common diseases were fever, pain, diabetes, cough and cold, stomach problems, asthma including skin diseases. The study revealed that a single species like Glycosmis pentaphylla, Cardiospermum halicacabum, Acacia catechu, Aegle marmelos, Artocarpus lacucha, Bacopa monnieri, Caesalpinia bonduc, Centella asiatica, Curcuma longa, Cynodon dactylon, Heliotropium indicum, Hygrophila auriculata, Justicia adhatoda have been utilized for more than one occasion to treat several ailment and disorder. Caesalpinia bonduc was utilized to reduce and cure stomach pain and was also found to be effective in case of dysentery among calf. However, Dev & De ²⁴ and Chakraborty & Bhattacharjee ²⁵ reported a few plants (*Ampelocissus* tomentosa, Glossogyne bidens and Ichnocarpus frutescens) that were used against bone fracture in Purulia district, India whereas in the present study four plants including Scoparia dulcis (leaf), Datura metel (root), Cardiospermum halicacabum (leaf), Combretum indicum (bark) were used to prepare traditional remedies and applied on similar ailments. Application of 3 species namely Alstonia scholaris, Holarrhena antidysenterica and Centella asiatica were found to be effective on dysentery in Narsinghdi District of Bangladesh ²⁶, while the authors ascertained new treatment procedures in the studied area by local tribal people for the same purposes using the species, Mimosa pudica, Justicia gendarussa, Cynodon dactylon, Centella asiatica, Caesalpinia bonduc, Artocarpus lacucha and Acacia catechu. Chakraborty & Bhattacharjee ²⁵, reported the use of Curculigo orchioides for treating leucorrhoea and nasal bleeding problem in Purulia district of West Bengal. However, our findings suggested enhancement of sperm production on consumption of its roots. Five plant species namely, Musa paradisiaca, Aegle marmelos, Tamarindus indica, Catharanthus roseus, Hygrophila auriculata were found to be effective to treat diabetes in the study area while Biswas et al. 27, reported the use of some of these species as antidiabetic in Bangladesh. Ovedemi et al. 28, accounted 15 plant species employed for the management of diabetes at entire Eastern Cape Province of South Africa while the present study highlighted the use of around 7 percent taxa against diabetes. The study accounted that species like Sida rhombifolia, Cardiospermum halicacabum, Carica papaya, Cocos nucifera were used for the treatment of skin disorders whereas fruits of Ficus racemosa and leaf of Bacopa monnieri were utilized to expel asthma. There are many more diseases they suffer and treat including common fever, cough and cold, high temperature and use of species like Andrographis paniculata, Colocassia esculenta, Justicia adhatoda, Ocimum gratissimum. Paduranga et al. ²⁹, reported Abutilon indicum, Achyranthes aspera used against menstrual disorders, Anamirta cocculus used for contraction of uterus by Konda Reddis of Andhra Pradesh. Acacia catechu, Terminalia arjuna were found to be effective in female diseases in the studied area. Muthu et al. ³⁰, reported the use of *Ricinus communis, Coleus aromaticus* to treat stomachache and *Citrus aurantifolia* against fever and headache in Kancheepuram district of Tamil Nadu. The species that are reported in the present study such as *Cucurbita maxima, Caesalpinia bonduc, Centella asiatica, Datura stramonium, Justicia adhatoda* have been known to be used against stomachache and *Moringa oleifera* against headache. The survey also revealed the uses of plants like *Euphorbia neriifolia, Caesalpinia bonduc, Cassia fistula* for veterinary purposes.

The present study exhibited a high degree of ethnobotanical novelty and the use of plant resources for medicine by the aboriginal communities. Recently, the knowledge of medicinal plants or ethnobotany has gained worldwide attention due to its effectiveness, therapeutic purposes. However, the traditional knowledge is confined only to the elderly and relative members of community and it becomes difficult to translate it to the younger generations as it if affected by the modernization and less interest shown by the youngsters ³¹. Therefore, sincere action on documentation, conservation and creating public awareness is utmost necessary for the sustainable use of medicinal plants.

CONCLUSION

In the present communication, it was observed that the study area has plenty of medicinal plants to treat a wide spectrum of human ailments, economically significant plants and plants which are important as food. Much ethnobotanical knowledge in different blocks of Malda has not been meticulously documented and transmitted from generation to generation. The knowledge has been restricted to a few elderly people of the rural and tribal areas due to rapid modernization and urbanizations. Therefore, in order to bridge this lacuna, systematic documentation and investigation on the ethnobotanical practices by the rural and tribal people living in the remote and far flung areas is utmost necessary. Nowadays due to lack of interest among the younger generation as well as their tendency to migrate to cities for lucrative jobs, there is a possibility of losing this wealth of knowledge in the near future. It thus becomes very crucial to preserve the traditional knowledge.

Conflicts of Interest

The authors declare that they have no any conflicts of interest.

ACKNOWLEDGEMENT

The authors are thankful to all the native informants and villagers for sharing their valuable knowledge.

REFERENCES

- 1. Jain SK. A Manual of Ethnobotany. Scientific Publisher: Jodhpur; 1987.
- 2. Heinrich M. Ethnobotany and its role in drug development. Phytother. Res. 2000; 14(7): 479-488.
- 3. Gadgil MF. Berkes F. Folke C. Indigenous knowledge: From local to global. Ambio. 2021; 50: 967–969. doi: org/10.1007/s13280-020-01478-7.
- 4. Sarkar A. Ethnobotanical studies of sub-Himalayan duars in West Bengal and Assam with particular reference to the tribe Mech. (Doctoral dissertation, Ph. D. Thesis, North Bengal University, Siliguri); 2011.
- 5. Nadembega P, Boussim JI, Nikiema JB et al. Medicinal plants in Baskoure, Kourittenga Province, Burkina Faso: an ethnobotanical study. J. Ethnopharmacol. 2011; 133: 378-395. doi:10.1016/j.jep.2010.10.010
- 6. Camara-Leret R, Fortuna MA, Bascompte J. Indigenous knowledge networks in the face of global change. PNAS. 2019; 116 (20): 9913-9918. doi:org/10.1073/pnas.1821843116.
- 7. MTA (Ministry of Tribal Affairs). Statistical Profile of Scheduled Tribes in India. Statistics Division: Government of India; 2013; http://tribal.nic.in
- 8. Van Wyk BE, Oudtshoorn BV, Gericke N. Medicinal Plants of South Africa. Johannesburg. Briza Publications: Pretoria; 1997.
- 9. Rates SMK. Plants as source of drugs. Toxicon. 2001; 39(5): 603-613.
- Park HL, Lee HS, Shin BC et al. Traditional medicine in China, Korea, and Japan: A brief introduction and comparison. Evi. Based Comple. Alt. Med. 2012; 1-9. doi: org/10.1155/2012/429103
- 11. Sur PR, Sen R, Haldar AC, Bandyopadhyay S. Observation on the Ethnobotany of Malda West Dinajpur districts, W. B. II. J. Econ. Tax. Bot. 1990; 14(2): 453-459.
- 12. Mitra S. Studies on the flora and ethnobotany of West Dinajpur district, West Bengal (India). (Doctoral dissertation, Ph. D. Thesis, Kalyani University, Kalyani); 2002.
- 13. Ghosh A. Ethnoveterinary medicine from the tribal areas of Bankura and Medinipur district, West Bengal. Nat. Prod. Rad. 2008; 7(5):461-465.
- 14. Mitra S, Mukherjee S. Ethnobotany of some grasses of West Bengal. (India). Advances in Plant Biology (Devidas Bhattacharya Birth Centenary Volume) 2009.
- 15. Bandopadhyay S, Mukherjee SK. Wild edible plants of Koch Bihar district, West Bengal. Nat. Prod. Radiance. 2009; 8(1): 64-72.

- 16. Tushar, Basak S, Sarma GC et al. Ethnomedicinal uses of Zingiberaceae plants of Northeast India. J. Ethno. Pharma. 2010; 132(1): 286-296. doi: 10.1016/j.jep.2010.08.032
- 17. Saha MR, Kar P, Sen A et al. Ethnobotany of Chanchal Block of Malda District of West Bengal (India): plants used in local healthcare. Pleione. 2014; 8(2): 381-90.
- 18. Ghosh C. Ethnobotanical survey in the Bamangola Block of Malda District, West Bengal (India): II. Medicinal and Aromatic plants. Pleione. 2017; 11(2): 249-267.
- 19. Moktan S, Rai P. Ethnobotanical approach against respiratory related diseases and disorders in Darjeeling region of Eastern Himalaya. NeBIO. 2019; 10(2): 99-105.
- 20. Mitra S, Mukherjee SK. Flora and Ethnobotany of West Dinajpur District, West Bengal. Bishen Singh Mahendra Pal Singh: Dehradun; 2013.
- 21. Friedman J, Yaniv Z, Dafni A et al. A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert, Israel. J. Ethnophar. 1986; 16(2-3): 275-287. doi:org/10.1016/0378-8741(86)90094-2
- 22. Phillips OL, Gentry AH, Reynel C et al. Quantitative ethnobotany and Amazonian Conservation. Conservation Biology. 1994; 8, 225-248.
- 23. Heinrich M, Ankli A, Frei B et al. Medicinal plants in Mexico: Healers' consensus and cultural importance. Social Sci.Med.1998; 47(11): 1859-1871.
- 24. Dey A, De JN. Ethnoveterinary uses of medicinal plants by the aboriginals of Purulia district, West Bengal, India. Int. J. Bot. 2010; 6(4): 433-440.
- 25. Chakraborty MK, Bhattacharjee A. Some common ethnomedicinal uses for various diseases in Purulia district West Bengal. Ind. J. Trad. Know. 2006; 5(4): 554-558.
- 26. Rahmatullah M, Rahman Rehana F, Kalpana MA et al. A scientific evaluation of medicinal plants used in the folk medicinal system of five villages in Narsinghdi District, Bangladesh. Am. Eurasian J. Sust. Agric. 2010; 4(1): 55-64.
- 27. Biswas KR, Ishika T, Rahman M et al. Antidiabetic plants and formulations used by folk medicinal practitioners of two villages in Narail and Chuadanga districts, Bangladesh. Amer. Eur. J. Sus. Agri. 2011; 5: 158-167.
- 28. Oyedemi SO, Bradley G, Afolayan AJ. Ethnobotanical survey of medicinal plants used for the management of diabetes mellitus in the Nkonkobe municipality of South Africa. J. Med. Plan. Res. 2009; 3(12): 1040-1044.
- 29. Panduranga RM, Prasanthi S, Reddi ST. Medicinal plants in Folk medicine for Women's diseases in use by Konda Reddis. Ind. J. Trad. Know. 2011; 10(3): 563-567.

- 30. Muthu C, Ayyanar M, Raja N et al. Medicinal plants used by traditional healers in Kancheepuram District of Tamil Nadu, India. J. Ethnobio. Ethnomed. 2006; 2(1): 43.
- 31. Jima TT, Megersa M. Ethnobotanical Study of Medicinal Plants Used to Treat Human Diseases in Berbere District, Bale Zone of Oromia Regional State, South East Ethiopia. Evi. Based Comple. Alt. Med. 2018; 1-16. doi:org/10.1155/2018/8602945