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ABSTRACT 

The objective of this paper is to study dynamical deformations in an initially stressed diffusive 
micropolar thermoelastic medium with fractional order heat conduction subjected to ramp type 
mechanical load. The theory of fractional order generalized thermoelasticity is employed in an initially 
stressed micropolar thermoelastic half space with diffusion. Laplace and Fourier transforms are 
employed to solve the problem. Expressions for different field variables in the physical domain are 
derived by the application of numerical inversion technique. Some particular cases of interest have also 
been inferred from the present problem. Comparisons of the physical quantities are shown in figures to 
study the effects of ramp parameter, fractional parameter and initial stress.  
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INTRODUCTION 
Eringen’s micropolar theory of elasticity1 is now well known and does not need much 

introduction. A historical development of the theory of micropolar elasticity is given in a monograph by 

Eringen2. In this theory, a load across a surface element is transmitted not only by a force stress vector 

but also by a couple stress vector and the motion is characterized by six degrees of freedom (three of 

translation and three of microrotation). Micropolar elastic solids can be thought of as being composed of 

dumb-bell type molecules and these molecules in a volume element can undergo rotation about their 

centre of mass along with the linear displacement. This theory is expected to find applications in the 

treatment of mechanics of granular materials, composite fibrous materials and particularly microcracks 

and microfractures. The dynamical interactions between thermal and mechanical fields in solids have 

great applications in aeronautics, nuclear reactors and high energy particle accelerators. Keeping the 

above applications in view, the micropolar theory was extended to include thermal effects by Nowacki3-5 

and Eringen6. One can refer to Dhaliwal and Singh7 for a review on the micropolar thermoelasticity and 

a historical survey of the subject.    

In the last few years, fractional calculus has also been introduced in the theory of 

thermoelasticity. A quasi-static uncoupled theory of thermoelasticity based on fractional heat conduction 

equation has been put forward by Povstenko8. Sherief et al.9 have proposed a new model of 

thermoelasticity using fractional calculus with second sound effects, proved a uniqueness theorem and 

derived reciprocity relation and variational principle. Shaw and Mukhopadhyay10 have suggested a 

fractional order micropolar generalized thermoelasticity theory with two temperatures using the 

fractional order theory derived by Sherief et al.9. The uniqueness theorem, reciprocity theorem and a 

variational principle on this theory are also provided in the same article. Deswal and Kalkal11 solved a 

two dimensional problem in a micropolar thermoviscoelastic medium by employing fractional order heat 

conduction with two temperatures. 

The development of initial stress in the medium is due to many reasons such as the process of 

quenching, resulting from difference of temperatures, slow process of creep, differential external forces, 

and gravity variations. The earth is supposed to be under high initial stress. The researchers have shown 

much interest to study the effect of these stresses on the propagation of waves. Biot12 solved the 

dynamic problem of elastic medium under initial stress. Chattopadhyay et al.13 studied the reflection of 

elastic waves under initial stress at a free surface. Montanaro14 studied the isotropic linear 
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thermoelasticity with hydrostatic initial stress by using Biot’s linearization of the constitutive law for 

stress. Othman and Song15 investigated the reflection of plane waves from an elastic solid half-space 

under hydrostatic initial stress without energy dissipation. Recently, Yadav et al.16 studied propagation 

of waves in an initially stressed generalized electromicrostretch thermoelastic medium with temperature-

dependent properties under the effect of rotation. 

The current manuscript is an attempt to discuss the phenomenon of wave propagation in a new 

theory of micropolar generalized thermoelasticity with fractional derivative heat transfer in an  initially 

stressed thermodiffusive half space due to ramp type mechanical load, allowing the second sound 

effects. The medium is assumed initially quiescent. An analytical–numerical technique based on Laplace 

and Fourier transforms is adopted to solve the governing equations. Numerical results for temperature, 

concentration and stress distributions in physical space–time domain have been obtained for a 

magnesium crystal like material and presented graphically. Some comparisons have been shown in 

figures to estimate the effects of ramp parameter, fractional order parameter and initial stress on all the 

considered fields. 

PROBLEM FORMULATION 
Following Shaw and Mukhopadhyay10, the field equations and stress-strain-temperature relations 

in an initially stressed rotating fractional order micropolar thermoelastic medium with diffusion are: 

The constitutive relations: 

   , , , , 1 2 ( ) ,ij r r ij i j j i j i ijr r ij ij ij iju u u k u c P                   
                                      

(1) 

, , , ,ij r r ij i j j im                           (2) 

Stress equation of motion: 

, ( ) ,ji j iu 
                                                                          (3) 

Couple stress equation of motion: 

     . 2

,

imn mnk u k P

j

        

 

          



  

      
(4) 
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Energy equation with fractional derivative heat transfer: 

* 2
0 1 0 0 0 01 1 . 1 ,

m m m

E m m m

cK c T u aT
t t t t t t


     

          
                      



    

(5) 

 

Fractional order mass diffusion equation  

2 2 2
2 1( . ) 1 ,

m

m

cDb c D u Da
t t

  
  

          



       
(6)

 
where 

, ,
1 ( ).
2ij j i i ju u  

 
 

Here ij  denotes the components of force stress tensor, ijm stands for the components of couple 

stress tensor, 


and u  are microrotation vector and displacement vector respectively and 

1 =  3 2 tk    , 2 =  3 2 ck     are the material constants,  and  are generalized Lame’s 

constants,  satisfying the relations
(1 )(1 2 )

E
  


 

 and 2 (1 )E  

  . Here ,E   and   are Young’s 

modulus, Poisson’s ratio and initial stress parameter respectively. , , , k    indicate micropolar material 

constants, j  is  the microinertia, t  and c are coefficients of linear thermal expansion and linear 

diffusion expansion respectively, , ,a b D are thermoelastic diffusion constants, 0 1,  are thermal and 

diffusion relaxation times respectively, 0T T    and 0c C C  , T is absolute temperature, oT is 

temperature of medium in natural state, C  is non equilibrium concentration, 0C is mass concentration at 

natural state,  is the density of medium, K   is the thermal conductivity, P is initial stress and m  is the 

fractional order parameter such that 0 1m  . 

 

In the present context, let us consider an initially stressed  micropolar thermodiffusive half space. 

We take z axis pointing vertically downward into the xz half space. We restrict our analysis to xz plane. 

For two-dimensional deformations, we have 
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   2,0, , 0, ,0 .u u w   
  

 

It is convenient to have the above equations rewritten in the dimensionless form. To this end, the 

following dimensionless parameters are introduced: 

            
**

*1
0 1 0 1

1 1 0 0 0

, , , , , , , , , , , , ,c cx z x z u w u w t t c
c T T C

      


             , 

 

2 *
1

2 2
1 0 1 0 1 1 0

( , )
, ( , ) , ,ij

ij ij ij

Pc P m m
T T c T

 
  

  
     

 
where 

 2
* 21

1*

2
,E kc c c

K
 




 
 

. 

Using Helmholtz decomposition, the displacement components can be written as 

 

,q qu w
x z z x

    
   
      

   

where  , ,q x z t  and  , ,x z t  are scalar potential functions. 

 Introducing the above dimensionless parameters and potential functions, equations (3) – (6) recast into 

the following forms (after dropping the prime): 

 
2

2
12 0,q c

t
 

 
                       (7) 

2
2

0 1 0 22( ) 0,a a a
t

 
 

                      (8) 
2

2 2
2 3 2 222 0,a a a

t
 

 
                          (9) 

     
1 1 11 1 1* 2 2 * *

4 0 0 5 01 1 1 0,
m m mm m m

m m ma q a c
t t t t t t
      

    

  

          
                       

  (10) 
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 
114 2 2 *

6 7 8 1 1 0,
mm

ma q a a c
t t

  




   
            

      (11) 

where  

2

2
2 0 1

1 0 1 22 2 *
1 0 1 1

, , , ,ec kck Sa a a
T c c

 


   


     
2 22

1 0 0 11
3 4 5* * * *, , ,T aC cc ja a a

K K


   
    

2
1 2 0 0 1 01

6 7 82 *
1 0 0

, , , .
2

T aT T Pca a a S
c bC bC Db
  
 

     

 

SOLUTION OF THE PROBLEM 
Following the solution methodology through integral transform technique, we now operate 

Laplace and Fourier transforms on equations (7)-(11). The Laplace and Fourier transforms of a function 

 , ,f x z t  with parameters s and   are defined by the relations 

   
0

, , , , ,stf x z s f x z t e dt


 
         (12) 

   ˆ , , , , ,xf z s f x z s e dx




           (13)     

where over-bar and over-cap denote the Laplace and Fourier transforms respectively. 

Applying the above transforms under homogeneous initial conditions on equations (7)-(11) and then 

solving, we obtain the following system of ordinary differential equations: 

 

 6 4 2
1 1 1

ˆˆ ˆ{ , , } 0D L D M D N q c    ,        (14) 

 4 2
2 2 2ˆ{ , } 0,D L D M              (15) 

where 

1 1 1 2 2, , , and are defined in Appendix A.L M N L M  

The solutions of equations (14) and (15) can be expressed as 

 

* *

1,2 ,3

ˆˆ ˆ( , , ) (1, , ) ,i z
i i i

i

q c a b R e  



 
       (16) 
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*
2

4 ,5

ˆˆ( , ) (1, ) ,i z
i i

i

c R e   



 
                  (17) 

where 

  
2 12( 1)2 cos , ( 1,2,3)

3 3i
LiH i 


      

    
2

2 2 22
4,5

4
,

2
L L M


  


    

  2 1 2 3 3
1 1 1 1 1 1

| |1 1 2 1, tan , 4 , ,
3 9 27 3

H M L G H G L M L N
G

 
             

     

2 4 2 2 2 2
* * *4 5 6 7 0 1 1

2 2
2 3 2 3 0

[( )( ) ]
, ,i i i i

i i i
i i

g g g g a a sa b c
g g g g a
    
 

     
  

 
 

        

and ( 1 , 2 ,3 , 4 ,5 )iR   are unknown constants depending upon ands  . 

 

BOUNDARY CONDITIONS 
The surface of the half space is subjected to ramp type mechanical  load.  The corresponding 

boundary conditions can be described as 

 

1 ( ) ( ), 0 at 0,zz zx zyP x h t m c z                 (18) 

where 1  represents the strength of load and ( )x  is the Dirac-delta function and ( )h t is defined as 

  0
0

0

0, 0

, 0 ,

1,

t
th t t t
t

t t

 

  

   

0 is ramp parameter.t  

 

Making use of these boundary conditions, we obtain the following values for the displacement 

components, stresses, temperature field and mass concentration 
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1,2,3 4,5

1ˆ ,i iz z
i i i

i i
u e e   

 

 
       

 
             (19) 

1,2,3 4,5

1ˆ ,i iz z
i i i

i i
w e e   

 

 
       

 
            (20) 

2
1,2,3 4,5

1ˆ (1 ) ,i iz z
zz i i i

i i
t r e b e P  

 

 
        

         (21) 

1
1,2,3 4,5

1ˆ ,i iz z
zx i i i i

i i
t e r e    

 

 
      

               (22) 

*4

4 ,5

ˆ ,i z
z y i i i

i

bm c e  



 
     


             (23) 

*

1,2 ,3

1ˆ ,i z
i i i

i
a e   



 
    


              (24) 

*

1,2,3

1ˆ ,i z
i i i

i
c b e  



 
    


             (25) 

where all the constants are defined in Appendix B. 

 

SPECIAL CASE 

Neglecting fractional effect 
To discuss the problem of wave propagation in a generalized thermoelasticity theory of integer 

type with initial stress and diffusion, it is sufficient to ignore the fractional values of  m  which is the 

fractional order parameter.  For this purpose we will take 1m   in basic equations. Hence, the problem 

reduces to the well-known conventional problem of generalized thermoelasticity and values of all the 

fields can be procured from the expressions (19) -(25) by making suitable modifications in the 

governing equations. 

INVERSION OF THE TRANSFORMS 
The transformed components of displacements, temperatures and stresses can be formally 

expressed as function of z and the parameters of Laplace and Fourier transforms s and   respectively 
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and hence are of the form  ˆ , ,f z s . In order to obtain the solution of the problem in the physical 

domain, we invert the double transforms in equations (19)-(25) by adopting the methodology of Rakshit 

and Mukhopadhyay 17. 

 

NUMERICAL RESULTS AND DISCUSSION 
With an aim to illustrate the contribution of different parameters on the field quantities, a 

numerical analysis is carried out. To fulfill this purpose, we have chosen magnesium crystal like 

parameter, for which 
3 3 0 1 21.74 10 , 10.8 10 , 0.35,kgm E kgm s          

2 1 2 9 2 19 21.7 10 , 0.779 10 , 0.2 10 ,k Jm s kgms j m         
* 10 2 3 1 1

0 01.0 10 , 1.04 10 , 298 , 0.1 ,EK Nm c Jkg K T K s       
4 2 2 1 6 5 1 2

11.2 10 , 0.9 10 , 0.2 ,a m s K b m kg s s      
8 3

1 00.85 10 , 1, 2.5, 5, 0.5,D kgsm P t        5 1 4 3 12.36 10 , 1.98 10 .t cK m kg         

 

With these numerical values of the parameters, the values of the field quantities are computed for 

the time 0.1 = ݐ. From application point of view, we have divided the graphs into tho groups. The first 

group (Figures 1-4) exhibits effect of initial stress and fractional parameter on different field variables. 

When initial stress is neglected, we have taken 0, 1P   in field equations while 1m   correspond to 

without fractional effect case. In the second group (Figures 5-8) field variables are plotted for three 

different values of ramp parameter (0.3, 0.5 and 0.9). 
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Fig. 1. Effect of fractional parameter and initial stress on force stress 
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Fig. 2. Effect of fractional parameter and initial stress on couple stress 
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Fig. 3. Effect of fractional parameter and initial stress on temperature 
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Fig. 4. Effect of fractional parameter and initial stress on mass concentration 
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Group I 
Figure 1 shows effects of fractional parameter and initial stress on force stress. It is observed that 

the most negative value of couple stress is gained at z=0. Presence of initial stress and fractional 

parameter exhibit mix kind of effect on numerical values of force stress. One more interesting 

observation is that in the absence of initial stress, force stress ultimately tends to zero while it tends to 

non zero constant value in the presence of initial stress. 

 

Figure 2 depicts profile of couple stress against distance z in order to check the effects of 

fractional parameter snd initial stress. The profile of couple stress is similar in all the three cases. All the 

three curves start with zero satisfying boundary conditions. Then attain its maximaum value near z=0.5 

and then ultimately tend to zero. Initial stress has decreasing effect while fractional parameter has 

increasing effect on couple stress although the curves in the presence and absence of fractional 

parameter seem to be coinciding. 

 

Figure 3 and Figure 4 describe effects of fractional parameter and initial stress on temperature 

and mass concentration respectively. Initially, the values of both these fields start with  zero which is in 

accordance with the boundary conditions. Fractional parameter acts as an increasing agent while initial 

stress acts as a decreasing agent for temperature field which is clear from Figure 3. The same scenario is 

observed for mass concentration in Figure 4. Also it is observed that both these fields attain their 

maximum numerical value near z=0.5 and then ultimately tend to zero in all the cases.  
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Fig. 5. Effect of ramp parameter on force stress 
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Fig. 6. Effect of ramp parameter on couple stress 
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Fig. 7. Effect of ramp parameter on temperature 
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Fig. 8. Effect of ramp parameter on mass concentration 
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Group II 
Figure 5 and Figure 6 describe effect of ramp parameter on force stress and couple stress 

respectively by taking three values of ramp parameter (0.3, 0.5 and 0.9).   It is clear from Figure 5 that 

ramp parameter shows miscellaneous effects on numerical values of force stress. Figure 6 shows that the 

profile of couple stress is similar for all the three values of ramp parameter. It is observed that ramp 

parameter has decreasing effect on couple stress. 

 

Figure 7 and Figure 8 are plotted to evince the effect of ramp parameter on temperature field and 

mass concentration field respectively. For all the three values of ramp parameter, both these fields 

vanish at z=0 satisfying the boundary conditions. Increment in the values of ramp parameter minifies the 

values of temperature and mass concentration numerically. Thus ramp parameter has decreasing effect 

on both these fields. 

 

CONCLUDING REMARKS  
The main goal of this work is to introduce a new mathematical model of heat conduction with time 

fractional order m for isotropic material as an improvement and progress in the field of micropolar 

thermoelasticity. The reason of this development is that a fractional model can describe simply and 

elegantly the complex characteristics of a thermoelastic material. According to the above analysis, we 

can conclude the following points: 

 The phenomenon of finite speed of propagation is manifested in all the figures except the force 

stress. 

 It is  interesting to notice from Figure 1 that in the absence of initial stress, force stress also tend 

to zero. 

 Initial stress acts as a decreasing agent for all the physical fields except force stress.  

 The effect of ramp parameter on all the studied fields is very much significant. 

 It is apparent from figures that presence of fractional parameter magnifies all the field variables 

numerically except force stress. 
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